
Simulink®

Developing S-Functions

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Developing S-Functions
© COPYRIGHT 1998–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

October 1998 First printing Revised for Version 3.0 (Release R11)
November 2000 Second printing Revised for Version 4.0 (Release R12)
July 2002 Third printing Revised for Version 5.0 Release R13)
April 2003 Online only Revised for Version 5.1 (Release R13SP1)
April 2004 Online only Revised for Version 5.1.1 (Release R13SP1+)
June 2004 Online only Revised for Version 6.0 (Release R14)
October 2004 Online only Revised for Version 6.1 (Release R14SP1)
March 2005 Online only Revised for Version 6.2 (Release R14SP2)
September 2005 Online Only Revised for Version 6.3 (Release R14SP3)
March 2006 Online only Revised for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release 2006b)
March 2007 Online only Revised for Version 6.6 (Release 2007a)
September 2007 Online only Revised for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Revised for Version 7.5 (Release 2010a)
September 2010 Online only Revised for Version 7.6 (Release 2010b)
April 2011 Online only Revised for Version 7.7 (Release 2011a)
September 2011 Online only Revised for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Simulink 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)
March 2017 Online only Revised for Version 8.9 (Release 2017a)

Contents

Overview of S-Functions
1

What Is an S-Function? . 1-2

Use S-Functions in Models . 1-3
Overview . 1-3
Passing Parameters to S-Functions . 1-5
When to Use an S-Function . 1-7

How S-Functions Work . 1-8
Introduction . 1-8
Mathematics of Simulink Blocks . 1-8
Simulation Stages . 1-8
S-Function Callback Methods . 1-11

Implementing S-Functions . 1-12
MATLAB S-Functions . 1-12
MEX S-Functions . 1-13

S-Function Callback Methods . 1-14
Callback Methods Overview . 1-14
Callback Methods for C MEX S-Functions 1-15
Callback Methods for Level-2 MATLAB S-Functions 1-16

S-Function Compatibility . 1-19

S-Function Concepts . 1-20
Direct Feedthrough . 1-20
Dynamically Sized Arrays . 1-21
Setting Sample Times and Offsets 1-22

S-Function Examples . 1-26
Overview of Examples . 1-26
Level-2 MATLAB S-Function Examples 1-29

v

Level-1 MATLAB S-Function Examples 1-29
C S-Function Examples . 1-31
Fortran S-Function Examples . 1-34
C++ S-Function Examples . 1-35

Selecting an S-Function Implementation
2

Available S-Function Implementations 2-2

S-Function Types . 2-3

Implement S-Functions . 2-4

S-Function Features . 2-6

S-Function Limitations . 2-10

S-Functions Incorporate Legacy C Code 2-12
Overview . 2-12
Using a Hand-Written S-Function to Incorporate Legacy

Code . 2-13
Using the S-Function Builder to Incorporate Legacy Code . . 2-15
Using the Legacy Code Tool to Incorporate Legacy Code . . . 2-18

Writing S-Functions in MATLAB
3

Custom Blocks using MATLAB S-Functions 3-2

Write Level-2 MATLAB S-Functions . 3-3
About Level-2 MATLAB S-Functions 3-3
About Run-Time Objects . 3-4
Level-2 MATLAB S-Function Template 3-4
Level-2 MATLAB S-Function Callback Methods 3-5
Using the setup Method . 3-6
Example of Writing a Level-2 MATLAB S-Function 3-7

vi Contents

Instantiating a Level-2 MATLAB S-Function 3-10
Operations for Variable-Size Signals 3-11
Generating Code from a Level-2 MATLAB S-Function 3-11
MATLAB S-Function Examples . 3-11

Maintain Level-1 MATLAB S-Functions 3-12
About the Maintenance of Level-1 MATLAB S-Functions . . 3-12
Level-1 MATLAB S-Function Arguments 3-13
Level-1 MATLAB S-Function Outputs 3-14
Define S-Function Block Characteristics 3-15
Processing S-Function Parameters 3-15
Convert Level-1 MATLAB S-Functions to Level-2 3-16

Writing S-Functions in C
4

About C S-Functions . 4-2

Creating C MEX S-Functions . 4-4

Build S-Functions Automatically . 4-5
About Building S-Functions Automatically 4-5
Deploying the Generated S-Function 4-9
How the S-Function Builder Builds an S-Function 4-9

S-Function Builder Dialog Box . 4-11
About S-Function Builder . 4-11
Parameters/S-Function Name Pane 4-13
Port/Parameter Pane . 4-14
Initialization Pane . 4-14
Data Properties Pane . 4-15
Input Ports Pane . 4-16
Output Ports Pane . 4-17
Parameters Pane . 4-18
Data Type Attributes Pane . 4-19
Libraries Pane . 4-19
Outputs Pane . 4-21
Continuous Derivatives Pane . 4-24
Discrete Update Pane . 4-25
Build Info Pane . 4-26

vii

Example: Modeling a Two-Input/Two-Output System 4-27

Basic C MEX S-Function . 4-33
Introducing an Example of a Basic C MEX S-Function 4-33
Defines and Includes . 4-35
Callback Method Implementations 4-36
Simulink/Simulink Coder Interfaces 4-38
Building the Timestwo Example . 4-38

Templates for C S-Functions . 4-39
About the Templates for C S-Functions 4-39
S-Function Source File Requirements 4-39
The SimStruct . 4-41
Data Types in S-Functions . 4-42
Compiling C S-Functions . 4-42

Integrate C Functions Using Legacy Code Tool 4-43
Overview . 4-43
Integrate C Functions into Simulink Models with Legacy Code

Tool . 4-46
Integrate C Function Whose Arguments Are Pointers to

Structures . 4-49
Registering Legacy Code Tool Data Structures 4-53
Declaring Legacy Code Tool Function Specifications 4-55
Generating and Compiling the S-Functions 4-62
Generating a Masked S-Function Block for Calling a Generated

S-Function . 4-63
Forcing Simulink Accelerator Mode to Use S-Function TLC

Inlining Code . 4-63
Calling Legacy C++ Functions . 4-64
Handling Multiple Registration Files 4-64
Deploying Generated S-Functions . 4-65
Legacy Code Tool Examples . 4-65
Legacy Code Tool Limitations . 4-65

Simulink Engine Interaction with C S-Functions 4-67
Introduction . 4-67
Process View . 4-67
Data View . 4-75

Write Callback Methods . 4-79

viii Contents

S-Functions in Normal Mode Referenced Models 4-80
Supporting the Use of Multiple Instances of Referenced Models

That Are in Normal Mode . 4-81

Debug C MEX S-Functions . 4-82
About Debugging C MEX S-Functions 4-82
Debug in Simulink Environment . 4-82
Debug Using Third-Party Software 4-85

Convert Level-1 C MEX S-Functions 4-89
Guidelines for Converting Level-1 C MEX S-Functions to

Level-2 . 4-89
Obsolete Macros . 4-91

Creating C++ S-Functions
5

Create a C++ Source File . 5-2
C++ References . 5-2

Make C++ Objects Persistent . 5-3

Build C++ S-Functions . 5-4

Creating Fortran S-Functions
6

Create Level-2 Fortran S-Functions . 6-2
About Creating Level-2 Fortran S-Functions 6-2
Template File . 6-2
C/Fortran Interfacing Tips . 6-2
Constructing the Gateway . 6-6
Example C MEX S-Function Calling Fortran Code 6-9

Port Legacy Code . 6-11
Find the States . 6-11
Sample Times . 6-11

ix

Store Data . 6-12
Use Flints if Needed . 6-12
Considerations for Real Time . 6-12

Using Work Vectors
7

DWork Vector Basics . 7-2
What is a DWork Vector? . 7-2
Advantages of DWork Vectors . 7-2
DWork Vectors and the Simulink Engine 7-3
DWork Vectors and the Simulink Coder Product 7-4

Types of DWork Vectors . 7-5

How to Use DWork Vectors . 7-7
Using DWork Vectors in C MEX S-Functions 7-7
DWork Vector C MEX Macros . 7-10
Using DWork Vectors in Level-2 MATLAB S-Functions 7-11
Using DWork Vectors With Legacy Code 7-13

DWork Vector Examples . 7-14
General DWork Vector . 7-14
DWork Scratch Vector . 7-16
DState Work Vector . 7-17
DWork Mode Vector . 7-19
Level-2 MATLAB S-Function DWork Vector 7-21

Elementary Work Vectors . 7-23
Description of Elementary Work Vector 7-23
Relationship to DWork Vectors . 7-23
Using Elementary Work Vectors . 7-24
Additional Work Vector Macros . 7-25
Elementary Work Vector Examples 7-26

x Contents

Implementing Block Features
8

Dialog Parameters . 8-2
About Dialog Parameters . 8-2
Tunable Parameters . 8-4

Run-Time Parameters . 8-7
About Run-Time Parameters . 8-7
Creating Run-Time Parameters . 8-8
Updating Run-Time Parameters . 8-12
Tuning Run-Time Parameters . 8-14
Accessing Run-Time Parameters . 8-14

Input and Output Ports . 8-16
Creating Input Ports for C S-Functions 8-16
Creating Input Ports for Level-2 MATLAB S-Functions 8-20
Creating Output Ports for C S-Functions 8-21
Creating Output Ports for Level-2 MATLAB S-Functions . . 8-22
Scalar Expansion of Inputs . 8-22
Masked Multiport S-Functions . 8-24

Custom Data Types . 8-25
Custom Data Types in C S-Functions 8-25
Using Simulink Recognizable Data Types in C S-Functions . 8-25
Using Opaque Data Types in C S-Functions 8-26
Using Custom Data Types in Level-2 MATLAB S-Functions 8-27

Sample Times . 8-29
About Sample Times . 8-29
Block-Based Sample Times . 8-30
Specifying Port-Based Sample Times 8-33
Hybrid Block-Based and Port-Based Sample Times 8-39
Multirate S-Function Blocks . 8-40
Multirate S-Functions and Sample Time Hit Calculations . . 8-42
Synchronizing Multirate S-Function Blocks 8-42
Specifying Model Reference Sample Time Inheritance 8-43

Zero Crossings . 8-45

xi

S-Function Compliance with the SimState 8-48
SimState Compliance Specification for Level-2 MATLAB S-

Functions . 8-48
SimState Compliance Specification for C-MEX S-Functions 8-49

Matrices in C S-Functions . 8-51
MX Array Manipulation . 8-51
Memory Allocation . 8-51

Function-Call Subsystems and S-Functions 8-53

Sim Viewing Devices in External Mode 8-58

Error Handling . 8-59
About Handling Errors . 8-59
Exception Free Code . 8-60
ssSetErrorStatus Termination Criteria 8-61
Checking Array Bounds . 8-61

C MEX S-Function Examples . 8-63
About S-Function Examples . 8-63
Continuous States . 8-63
Discrete States . 8-68
Continuous and Discrete States . 8-74
Variable Sample Time . 8-79
Array Inputs and Outputs . 8-84
Zero-Crossing Detection . 8-93
Discontinuities in Continuous States 8-106

S-Function Callback Methods — Alphabetical List
9

S-Function SimStruct Functions Reference
10

S-Function SimStruct Functions . 10-2
About SimStruct Functions . 10-2

xii Contents

Language Support . 10-2
The SimStruct . 10-2

SimStruct Macros and Functions Listed by Usage 10-3
Buses . 10-3
Data Type . 10-4
Dialog Box Parameters . 10-5
Error Handling and Status . 10-5
Function Call . 10-6
Input and Output Ports . 10-6
Model Reference . 10-12
Run-Time Parameters . 10-13
Sample Time . 10-14
Simulation Information . 10-15
State and Work Vector . 10-18
Code Generation . 10-20
Miscellaneous . 10-22

S-Function Options — Alphabetical List
11

xiii

1

Overview of S-Functions

• “What Is an S-Function?” on page 1-2
• “Use S-Functions in Models” on page 1-3
• “How S-Functions Work” on page 1-8
• “Implementing S-Functions” on page 1-12
• “S-Function Callback Methods” on page 1-14
• “S-Function Compatibility” on page 1-19
• “S-Function Concepts” on page 1-20
• “S-Function Examples” on page 1-26

1 Overview of S-Functions

What Is an S-Function?

S-functions (system-functions) provide a powerful mechanism for extending the
capabilities of the Simulink® environment. An S-function is a computer language
description of a Simulink block written in MATLAB®, C, C++, or Fortran. C, C++,
and Fortran S-functions are compiled as MEX files using the mex utility (see “Build
MEX File” (MATLAB)). As with other MEX files, S-functions are dynamically linked
subroutines that the MATLAB execution engine can automatically load and execute.

S-functions use a special calling syntax called the S-function API that enables you to
interact with the Simulink engine. This interaction is very similar to the interaction that
takes place between the engine and built-in Simulink blocks.

S-functions follow a general form and can accommodate continuous, discrete, and hybrid
systems. By following a set of simple rules, you can implement an algorithm in an S-
function and use the S-Function block to add it to a Simulink model. After you write
your S-function and place its name in an S-Function block (available in the User-Defined
Functions block library), you can customize the user interface using masking (see “Block
Masks”).

If you have Simulink Coder™, you can use S-functions with the software. You can also
customize the code generated for S-functions by writing a Target Language Compiler
(TLC) file. For more information, see “S-Functions and Code Generation” (Simulink
Coder).

1-2

 Use S-Functions in Models

Use S-Functions in Models

In this section...

“Overview” on page 1-3
“Passing Parameters to S-Functions” on page 1-5
“When to Use an S-Function” on page 1-7

Overview

To incorporate a C MEX S-function or legacy Level-1 MATLAB S-function into a
Simulink model, drag an S-Function block from the User-Defined Functions block library
into the model. Then specify the name of the S-function in the S-function name field of
the S-Function block's Block Parameters dialog box, as illustrated in the following figure.

1-3

1 Overview of S-Functions

In this example, the model contains an S-Function block that references an instance of
the C MEX file for the S-function timestwo.c.

1-4

 Use S-Functions in Models

Note: If the MATLAB path includes a C MEX file and a MATLAB file having the same
name referenced by an S-Function block, the S-Function block uses the C MEX file.

To incorporate a Level-2 MATLAB S-function into a model, drag a Level-2 MATLAB S-
Function block from the User-Defined Functions library into the model. Specify the name
of the S-function in the S-function name field.

Passing Parameters to S-Functions

The S-Function block S-function parameters and Level-2 MATLAB S-Function block
Parameters fields allow you to specify parameter values to pass to the corresponding
S-function. To use these fields, you must know the parameters the S-function requires
and the order in which the function requires them. (If you do not know, consult the S-
function's author, documentation, or source code.) Enter the parameters, separated
by a comma, in the order required by the S-function. The parameter values can be
constants, names of variables defined in the MATLAB or model workspace, or MATLAB
expressions.

The following example illustrates usage of the Parameters field to enter user-defined
parameters for a Level-2 MATLAB S-function.

1-5

1 Overview of S-Functions

The model msfcndemo_limintm in this example incorporates the sample S-function
msfcn_limintm.m.

1-6

 Use S-Functions in Models

The msfcn_limintm.m S-function accepts three parameters: a lower bound, an upper
bound, and an initial condition. The S-function outputs the time integral of the input
signal if the time integral is between the lower and upper bounds, the lower bound if the
time integral is less than the lower bound, and the upper bound if the time integral is
greater than the upper bound. The dialog box in the example specifies a lower and upper
bound and an initial condition of -5.0, 5.0, and 0, respectively. The scope shows the
resulting output when the input is a sine wave of amplitude 1.

See “Processing S-Function Parameters” on page 3-15 and “Error Handling” on page
8-59 for information on how to access user-specified parameters in an S-function.

You can use the masking facility to create custom dialog boxes and icons for your S-
Function blocks. Masked dialog boxes can make it easier to specify additional parameters
for S-functions. For a discussion on masking, see “Block Masks”.

When to Use an S-Function

You can use S-functions for a variety of applications, including:

• Creating new general purpose blocks
• Adding blocks that represent hardware device drivers
• Incorporating existing C code into a simulation (see “Integrate C Functions Using

Legacy Code Tool” on page 4-43)
• Describing a system as a set of mathematical equations
• Using graphical animations (see the inverted pendulum example, penddemo)

The most common use of S-functions is to create custom Simulink blocks (see “Block
Creation Basics”). When you use an S-function to create a general-purpose block, you can
use it many times in a model, varying parameters with each instance of the block.

1-7

1 Overview of S-Functions

How S-Functions Work

In this section...

“Introduction” on page 1-8
“Mathematics of Simulink Blocks” on page 1-8
“Simulation Stages” on page 1-8
“S-Function Callback Methods” on page 1-11

Introduction

To create S-functions, you need to understand how S-functions work. Such knowledge
requires an understanding of how the Simulink engine simulates a model, including the
mathematics of blocks. This section begins by explaining the mathematical relationships
between the inputs, states, and outputs of a block.

Mathematics of Simulink Blocks

A Simulink block consists of a set of inputs, a set of states, and a set of outputs, where
the outputs are a function of the simulation time, the inputs, and the states.

The following equations express the mathematical relationships between the inputs,
outputs, states, and simulation time

y f t x u

x f t x ud

=

=

0(, ,)

(, ,)

 (Outputs)

 & (Derivatives)

 (Update)x f t x x ud u c dk k+

=
1

(, , ,),

where x x x
c d

= [;].

Simulation Stages

Execution of a Simulink model proceeds in stages. First comes the initialization phase.
In this phase, the Simulink engine incorporates library blocks into the model, propagates

1-8

 How S-Functions Work

signal widths, data types, and sample times, evaluates block parameters, determines
block execution order, and allocates memory. The engine then enters a simulation
loop, where each pass through the loop is referred to as a simulation step. During each
simulation step, the engine executes each block in the model in the order determined
during initialization. For each block, the engine invokes functions that compute the block
states, derivatives, and outputs for the current sample time.

The following figure illustrates the stages of a simulation. The inner integration loop
takes place only if the model contains continuous states. The engine executes this loop
until the solver reaches the desired accuracy for the state computations. The entire
simulation loop then continues until the simulation is complete. See “Simulation Phases
in Dynamic Systems” in Using Simulink for more detailed information on how the engine
executes a model. See “Simulink Engine Interaction with C S-Functions” on page 4-67
for a description of how the engine calls the S-function API during initialization and
simulation.

1-9

1 Overview of S-Functions

How the Simulink Engine Performs Simulation

1-10

 How S-Functions Work

S-Function Callback Methods

An S-function comprises a set of S-function callback methods that perform tasks required
at each simulation stage. During simulation of a model, at each simulation stage, the
Simulink engine calls the appropriate methods for each S-Function block in the model.
Tasks performed by S-function callback methods include:

• Initialization — Prior to the first simulation loop, the engine initializes the S-function,
including:

• Initializing the SimStruct, a simulation structure that contains information
about the S-function

• Setting the number and dimensions of input and output ports
• Setting the block sample times
• Allocating storage areas

• Calculation of next sample hit — If you created a variable sample time block, this
stage calculates the time of the next sample hit; that is, it calculates the next step
size.

• Calculation of outputs in the major time step — After this call is complete, all the
block output ports are valid for the current time step.

• Update of discrete states in the major time step — In this call, the block performs
once-per-time-step activities such as updating discrete states.

• Integration — This applies to models with continuous states and/or nonsampled
zero crossings. If your S-function has continuous states, the engine calls the output
and derivative portions of your S-function at minor time steps. This is so the solvers
can compute the states for your S-function. If your S-function has nonsampled zero
crossings, the engine also calls the output and zero-crossings portions of your S-
function at minor time steps so that it can locate the zero crossings.

Note: See “Simulation Phases in Dynamic Systems” for an explanation of major and
minor time steps.

1-11

1 Overview of S-Functions

Implementing S-Functions

In this section...

“MATLAB S-Functions” on page 1-12
“MEX S-Functions” on page 1-13

MATLAB S-Functions

Level-2 MATLAB S-functions allow you to create blocks with many of the features and
capabilities of Simulink built-in blocks, including:

• Multiple input and output ports
• The ability to accept vector or matrix signals
• Support for various signal attributes including data type, complexity, and signal

frames
• Ability to operate at multiple sample rates

A Level-2 MATLAB S-function consists of a setup routine to configure the basic
properties of the S-function, and a number of callback methods that the Simulink engine
invokes at appropriate times during the simulation.

A basic annotated version of the template resides at msfuntmpl_basic.m.

The template consists of a top-level setup function and a set of skeleton local functions,
each of which corresponds to a particular callback method. Each callback method
performs a specific S-function task at a particular point in the simulation. The engine
invokes the local functions using function handles defined in the setup routine. See
“Level-2 MATLAB S-Function Callback Methods” on page 3-5 for a table of the
supported Level-2 MATLAB S-function callback methods.

A more detailed Level-2 MATLAB S-function template resides at msfuntmpl.m.

We recommend that you follow the structure and naming conventions of the templates
when creating Level-2 MATLAB S-functions. This makes it easier for others to
understand and maintain the MATLAB S-functions that you create. See “Write Level-2
MATLAB S-Functions” on page 3-3 for information on creating Level-2 MATLAB S-
functions.

1-12

 Implementing S-Functions

MEX S-Functions

Like a Level-2 MATLAB S-function, a MEX S-function consists of a set of callback
methods that the Simulink engine invokes to perform various block-related tasks
during a simulation. MEX S-functions can be implemented in C, C++, or Fortran. The
engine directly invokes MEX S-function routines instead of using function handles as
with MATLAB S-functions. Because the engine invokes the functions directly, MEX S-
functions must follow standard naming conventions specified by the S-function API.

An annotated C MEX S-function template resides at sfuntmpl_doc.c.

The template contains skeleton implementations of all the required and optional callback
methods that a C MEX S-function can implement.

For a more basic version of the template see sfuntmpl_basic.c.

MEX Versus MATLAB S-Functions

Level-2 MATLAB and MEX S-functions each have advantages. The advantage of Level-2
MATLAB S-functions is speed of development. Developing Level-2 MATLAB S-functions
avoids the time consuming compile-link-execute cycle required when developing in a
compiled language. Level-2 MATLAB S-functions also have easier access to MATLAB
toolbox functions and can utilize the MATLAB Editor/Debugger.

MEX S-functions are more appropriate for integrating legacy code into a Simulink model.
For more complicated systems, MEX S-functions may simulate faster than MATLAB S-
functions because the Level-2 MATLAB S-function calls the MATLAB execution engine
for every callback method.

See “Available S-Function Implementations” on page 2-2 for information on choosing
the type of S-function best suited for your application.

1-13

1 Overview of S-Functions

S-Function Callback Methods

In this section...

“Callback Methods Overview” on page 1-14
“Callback Methods for C MEX S-Functions” on page 1-15
“Callback Methods for Level-2 MATLAB S-Functions” on page 1-16

Callback Methods Overview

Every S-function must implement a set of methods, called callback methods, that the
Simulink engine invokes when simulating a model that contains the S-function.

The S-function callback methods perform tasks required at each simulation stage. During
simulation of a model, at each simulation stage the Simulink engine calls the appropriate
methods for each S-Function block in the model.

Tasks performed by S-function callback methods include:

• Initialization — Prior to the first simulation loop, the engine initializes the S-
function, including:

• Initializing the SimStruct, a simulation structure that contains information
about the S-function

• Setting the number and dimensions of input and output ports
• Setting the block sample times
• Allocating storage areas

• Calculation of next sample hit — If you created a variable sample time block, this
stage calculates the time of the next sample hit; that is, it calculates the next step
size.

• Calculation of outputs in the major time step — After this call is complete, all
the block output ports are valid for the current time step.

• Update of discrete states in the major time step — In this call, the block
performs once-per-time-step activities such as updating discrete states.

• Integration — This applies to models with continuous states and/or nonsampled
zero crossings. If your S-function has continuous states, the engine calls the output
and derivative portions of your S-function at minor time steps. This is so the solvers

1-14

 S-Function Callback Methods

can compute the states for your S-function. If your S-function has nonsampled zero
crossings, the engine also calls the output and zero-crossings portions of your S-
function at minor time steps so that it can locate the zero crossings.

Note: See “Simulation Phases in Dynamic Systems” for an explanation of major and
minor time steps.

Some callback methods are optional. The engine invokes an optional callback only if the
S-function defines the callback.

Callback Methods for C MEX S-Functions

Required Callback Methods

C MEX S-functions must implement the following callback methods:

• mdlInitializeSizes – Specifies the sizes of various parameters in the SimStruct,
such as the number of output ports for the block.

• mdlInitializeSampleTimes – Specifies the sample time(s) of the block.
• mdlOutputs – Calculates the output of the block.
• mdlTerminate – Performs any actions required at the termination of the simulation.

If no actions are required, this function can be implemented as a stub.

For information on writing callback methods, see “Write Callback Methods” on page
4-79.

Optional Callback Methods

The following callback methods are optional. The engine invokes an optional callback
only if the S-function defines the callback.

• mdlCheckParameters

• mdlDerivatives

• mdlDisable

• mdlEnable

• mdlGetSimState

• mdlGetTimeOfNextVarHit

1-15

1 Overview of S-Functions

• mdlInitializeConditions

• mdlProcessParameters

• mdlProjection

• mdlRTW

• mdlSetDefaultPortComplexSignals

• mdlSetDefaultPortDataTypes

• mdlSetDefaultPortDimensionInfo

• mdlSetInputPortComplexSignal

• mdlSetInputPortDataType

• mdlSetInputPortDimensionInfo

• mdlSetInputPortDimensionsModeFcn

• mdlSetInputPortSampleTime

• mdlSetInputPortWidth

• mdlSetOutputPortComplexSignal

• mdlSetOutputPortDataType

• mdlSetOutputPortDimensionInfo

• mdlSetOutputPortSampleTime

• mdlSetOutputPortWidth

• mdlSetSimState

• mdlSetWorkWidths

• mdlSimStatusChange

• mdlSetupRuntimeResources

• mdlCleanupRuntimeResources

• mdlStart

• mdlUpdate

• mdlZeroCrossings

Callback Methods for Level-2 MATLAB S-Functions

Required Callback Methods

Level-2 MATLAB S-functions must implement the following callback methods:

1-16

 S-Function Callback Methods

• setup – Specifies the sizes of various parameters in the SimStruct, such as the
number of output ports for the block.

• Outputs – Calculates the output of the block.
• Terminate – Performs any actions required at the termination of the simulation. If

no actions are required, this function can be implemented as a stub.

For information on writing callback methods, see “Write Level-2 MATLAB S-Functions”
on page 3-3.

Optional Callback Methods

The following callback methods are optional. The engine invokes an optional callback
only if the S-function defines the callback.

• CheckParameters

• Derivatives

• Disable

• Enable

• GetSimState

• InitializeConditions

• PostPropagationSetup

• ProcessParameters

• Projection

• SetInputPortComplexSignal

• SetInputPortDataType

• SetInputPortDimensions

• SetInputPortDimensionsMode

• SetInputPortSampleTime

• SetOutputPortComplexSignal

• SetOutputPortDataType

• SetOutputPortDimensions

• SetOutputPortSampleTime

• SetSimState

• SimStatusChange

1-17

1 Overview of S-Functions

• Start

• Update

• WriteRTW

1-18

 S-Function Compatibility

S-Function Compatibility

User-written level-2 S-functions are backward compatible in terms of their source code
(C/C++). An S-function written in an older release that is recompiled in a newer release
retains the functionality and behavior from the older release.

In addition, user-written level-2 S-function MEX files are backward compatible. For
each release, all example S-function MEX files included in the previous 10 releases of
MATLAB on the Windows® platform (MATLAB) are tested for backward compatibility.
In general, S-function MEX files created more than 10 releases before a new release can
work in a new release if the platform and associated libraries either remain unchanged
or maintain backward compatibility.

Note: If a user-written S-function contains code that depends on additional libraries (e.g.,
by using the ‘-l’ option with the MEX command), S-function compatibility might not be
supported with a library update, a newer release of MATLAB, or a platform upgrade.

For best results, recompile the S-function source code in your current version of
MATLAB. For more information on MEX compatibility, see “Version Compatibility”
(MATLAB).

1-19

1 Overview of S-Functions

S-Function Concepts

In this section...

“Direct Feedthrough” on page 1-20
“Dynamically Sized Arrays” on page 1-21
“Setting Sample Times and Offsets” on page 1-22

Direct Feedthrough

Direct feedthrough means that the output (or the variable sample time for variable
sample time blocks) is controlled directly by the value of an input port signal. Typically,
an S-function input port has direct feedthrough if

• The output function (mdlOutputs) is a function of the input u. That is, there is direct
feedthrough if the input u is accessed by mdlOutputs. Outputs can also include
graphical outputs, as in the case of an XY Graph scope.

• The “time of next hit” function (mdlGetTimeOfNextVarHit) of a variable sample
time S-function accesses the input u.

An example of a system that requires its inputs (that is, has direct feedthrough) is the
operation

y k u= ¥ ,

where u is the input, k is the gain, and y is the output.

An example of a system that does not require its inputs (that is, does not have direct
feedthrough) is the simple integration algorithm

y x= ,

&x u= ,

where x is the state, &x is the state derivative with respect to time, u is the input, and y is
the output. Simulink integrates the variable &x.

It is very important to set the direct feedthrough flag correctly because it affects the
execution order of the blocks in your model and is used to detect algebraic loops (see

1-20

 S-Function Concepts

“Algebraic Loops” in Using Simulink). If the simulation results for a model containing
your S-function do not converge, or the simulation fails, you may have the direct
feedthrough flag set incorrectly. Try turning on the direct feedthrough flag and setting
the Algebraic loop solver diagnostic to warning (see the “Algebraic loop” option on the
“Model Configuration Parameters: Diagnostics” reference page in Simulink Graphical
User Interface). Subsequently running the simulation displays any algebraic loops in the
model and shows if the engine has placed your S-function within an algebraic loop.

Dynamically Sized Arrays

You can write your S-function to support arbitrary input dimensions. In this case, the
Simulink engine determines the actual input dimensions when the simulation is started
by evaluating the dimensions of the input vectors driving the S-function. Your S-function
can also use the input dimensions to determine the number of continuous states, the
number of discrete states, and the number of outputs.

Note A dynamically sized input can have a different size for each instance of the S-
function in a particular model or during different simulations, however the input size of
each instance of the S-function is static over the course of a particular simulation.

A C MEX S-function and Level-2 MATLAB S-function can have multiple input and
output ports and each port can have different dimensions. The number of dimensions and
the size of each dimension can be determined dynamically.

For example, the following illustration shows two instances of the same S-Function block
in a model.

The upper S-Function block is driven by a block with a three-element output vector. The
lower S-Function block is driven by a block with a scalar output. By specifying that the
S-Function block has dynamically sized inputs, the same S-function can accommodate
both situations. The Simulink engine automatically calls the block with the appropriately
sized input vector. Similarly, if other block characteristics, such as the number of outputs

1-21

1 Overview of S-Functions

or the number of discrete or continuous states, are specified as dynamically sized, the
engine defines these vectors to be the same length as the input vector.

See “Input and Output Ports” on page 8-16 for more information on configuring S-
function input and output ports.

Setting Sample Times and Offsets

Both Level-2 MATLAB and C MEX S-functions provide the following sample time
options, which allow for a high degree of flexibility in specifying when an S-function
executes:

• Continuous sample time — For S-functions that have continuous states and/or
nonsampled zero crossings (see “Simulation Phases in Dynamic Systems” for an
explanation of zero crossings). For this type of S-function, the output changes in minor
time steps.

• Continuous, but fixed in minor time step sample time — For S-functions that need to
execute at every major simulation step, but do not change value during minor time
steps.

• Discrete sample time — If the behavior of your S-function is a function of discrete
time intervals, you can define a sample time to control when the Simulink engine
calls the S-function. You can also define an offset that delays each sample time hit.
The value of the offset cannot exceed the corresponding sample time.

A sample time hit occurs at time values determined by the formula

TimeHit = (n * period) + offset

where the integer n is the current simulation step. The first value of n is always zero.

If you define a discrete sample time, the engine calls the S-function mdlOutputs and
mdlUpdate routines at each sample time hit (as defined in the previous equation).

• Variable sample time — A discrete sample time where the intervals between sample
hits can vary. At the start of each simulation step, S-functions with variable sample
times are queried for the time of the next hit.

• Inherited sample time — Sometimes an S-function has no inherent sample time
characteristics (that is, it is either continuous or discrete, depending on the sample
time of some other block in the system). In this case, you can specify that the sample
time is inherited. A simple example of this is a Gain block that inherits its sample
time from the block driving it.

1-22

 S-Function Concepts

An S-function can inherit its sample time from

• The driving block
• The destination block
• The fastest sample time in the system

To specify an S-function sample time is inherited, use -1 in Level-2 MATLAB S-
functions and INHERITED_SAMPLE_TIME in C MEX S-functions as the sample time.
For more information on the propagation of sample times, see “How Propagation
Affects Inherited Sample Times” in the Simulink User's Guide.

S-functions can be either single or multirate; a multirate S-function has multiple sample
times.

Sample times are specified in pairs in this format: [sample_time, offset_time].

Valid C MEX S-Function Sample Times

The valid sample time pairs for a C MEX S-function are

[CONTINUOUS_SAMPLE_TIME, 0.0]

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

[discrete_sample_time_period, offset]

[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS_SAMPLE_TIME = 0.0

FIXED_IN_MINOR_STEP_OFFSET = 1.0

VARIABLE_SAMPLE_TIME = -2.0

and variable names in italics indicate that a real value is required.

Alternatively, you can specify that the sample time is inherited from the driving block. In
this case, the C MEX S-function has only one sample time pair, either

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

where

1-23

1 Overview of S-Functions

INHERITED_SAMPLE_TIME = -1.0

Valid Level-2 MATLAB S-Function Sample Times

The valid sample time pairs for a Level-2 MATLAB S-function are

[0 offset] % Continuous sample time

[discrete_sample_time_period, offset] % Discrete sample time

[-1, 0] % Inherited sample time

[-2, 0] % Variable sample time

where variable names in italics indicate that a real value is required. When using
a continuous sample time, an offset of 1 indicates the output is fixed in minor
integration time steps. An offset of 0 indicates the output changes at every minor
integration time step.

Guidelines for Choosing a Sample Time

Use the following guidelines for help with specifying sample times:

• A continuous S-function that changes during minor integration steps should register
the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

• A continuous S-function that does not change during minor integration steps should
register the [CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
sample time.

• A discrete S-function that changes at a specified rate should register the discrete
sample time pair, [discrete_sample_time_period, offset], where

discrete_sample_period > 0.0

and

0.0 ≤ offset < discrete_sample_period

• A discrete S-function that changes at a variable rate should register the variable-step
discrete sample time.

[VARIABLE_SAMPLE_TIME, 0.0]

In a C MEX S-function, the mdlGetTimeOfNextVarHit routine is called to get the
time of the next sample hit for the variable-step discrete task. In a Level-2 MATLAB
S-function, the NextTimeHit property is set in the Outputs method to set the next
sample hit.

1-24

 S-Function Concepts

If your S-function has no intrinsic sample time, you must indicate that your sample time
is inherited. There are two cases:

• An S-function that changes as its input changes, even during minor integration steps,
should register the [INHERITED_SAMPLE_TIME, 0.0] sample time.

• An S-function that changes as its input changes, but does not change during minor
integration steps (that is, remains fixed during minor time steps), should register the
[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.

The Scope block is a good example of this type of block. This block runs at the rate of
its driving block, either continuous or discrete, but never runs in minor steps. If it did,
the scope display would show the intermediate computations of the solver rather than
the final result at each time point.

See “Sample Times” on page 8-29 for information on implementing different types of
sample times in S-functions.

1-25

1 Overview of S-Functions

S-Function Examples

In this section...

“Overview of Examples” on page 1-26
“Level-2 MATLAB S-Function Examples” on page 1-29
“Level-1 MATLAB S-Function Examples” on page 1-29
“C S-Function Examples” on page 1-31
“Fortran S-Function Examples” on page 1-34
“C++ S-Function Examples” on page 1-35

Overview of Examples

To run an example:

1 In the MATLAB Command Window, enter sfundemos.

The S-function example library opens.

1-26

 S-Function Examples

Each block represents a category of S-function examples.
2 Double-click a category to display the examples that it includes. For example, click

C-files.

1-27

1 Overview of S-Functions

3 Double-click a block to open and run the example that it represents.

It might be helpful to examine some sample S-functions as you read the next chapters.
Code for the examples is stored in the following folder under the MATLAB root folder.

MATLAB code toolbox/simulink/simdemos/simfeatures

1-28

 S-Function Examples

C, C++, and Fortran code toolbox/simulink/simdemos/simfeatures/src

Level-2 MATLAB S-Function Examples

The matlabroot/toolbox/simulink/simdemos/simfeatures folder (open) contains
many Level-2 MATLAB S-functions. Consider starting off by looking at these files.

Filename Model Name Description

msfcn_dsc.m msfcndemo_sfundsc1 Implement an S-function with an
inherited sample time.

msfcn_limintm.m msfcndemo_limintm Implement a continuous limited
integrator where the output is
bounded by lower and upper bounds
and includes initial conditions.

msfcn_multirate.m msfcndemo_multirate Implement a multirate system.
msfcn_times_two.m msfcndemo_timestwo Implement an S-function that doubles

its input.
msfcn_unit_delay.m msfcndemo_sfundsc2 Implement a unit delay.
msfcn_varpulse.m msfcndemo_varpulse Implement a variable pulse width

generator by calling set_param from
within a Level-2 MATLAB S-function.
Also demonstrates how to use custom
set and get methods for the block
SimState.

msfcn_vs.m msfcndemo_vsfunc Implement a variable sample time
block in which the first input is
delayed by an amount of time
determined by the second input.

Level-1 MATLAB S-Function Examples

The matlabroot/toolbox/simulink/simdemos/simfeatures folder (open) also
contains many Level-1 MATLAB S-functions, provided as reference for legacy models.
Most of these Level-1 MATLAB S-functions do not have associated example models.

Filename Description

csfunc.m Define a continuous system in state-space format.

1-29

1 Overview of S-Functions

Filename Description

dsfunc.m Define a discrete system in state-space format.
limintm.m Implement a continuous limited integrator where the

output is bounded by lower and upper bounds and
includes initial conditions.

mixedm.m Implement a hybrid system consisting of a continuous
integrator in series with a unit delay.

sfun_varargm.m Implement an S-function that shows how to use the
MATLAB command varargin.

vsfunc.m Illustrate how to create a variable sample time block.
This S-function implements a variable step delay in
which the first input is delayed by an amount of time
determined by the second input.

1-30

 S-Function Examples

C S-Function Examples

The matlabroot/toolbox/simulink/simdemos/simfeatures/src folder (open)
contains examples of C MEX S-functions, many of which have a MATLAB S-function
counterpart. The C MEX S-functions are listed in the following table.

Filename Model Name Description

csfunc.c sfcndemo_csfunc Implement a continuous system.
dlimintc.c No model available Implement a discrete-time limited

integrator.
dsfunc.c sfcndemo_dsfunc Implement a discrete system.
limintc.c No model available Implement a limited integrator.
mixedm.c sfcndemo_mixedm Implement a hybrid dynamic system

consisting of a continuous integrator (1/s)
in series with a unit delay (1/z).

mixedmex.c sfcndemo_mixedmex Implement a hybrid dynamic system with
a single output and two inputs.

slexQuantizeSFcn.c sfcndemo_sfun_quantize Implement a vectorized quantizer.
Quantizes the input into steps as specified
by the quantization interval parameter, q.

sdotproduct.c sfcndemo_sdotproduct Compute dot product (multiply-
accumulate) of two real or complex vectors.

sfbuilder_bususage.csfbuilder_bususage Access S-Function Builder with a bus
input and output.

sftable2.c No model available Implement a two-dimensional table
lookup.

sfun_atol.c sfcndemo_sfun_atol Set different absolute tolerances for each
continuous state.

sfun_cplx.c sfcndemo_cplx Add complex data for an S-function with
one input port and one parameter.

sfun_directlook.c No model available Implement a direct 1-D lookup.
sfun_dtype_io.c sfcndemo_dtype_io Implement an S-function that uses

Simulink data types for inputs and
outputs.

1-31

1 Overview of S-Functions

Filename Model Name Description

sfun_dtype_param.c sfcndemo_dtype_param Implement an S-function that uses
Simulink data types for parameters.

sfun_dynsize.c sfcndemo_sfun_dynsize Implements dynamically-sized outputs .
sfun_errhdl.c sfcndemo_sfun_errhdl Check parameters using the

mdlCheckParameters S-function routine.
sfun_fcncall.c sfcndemo_sfun_fcncall Execute function-call subsystems on the

first and second output elements.
sfun_frmad.c sfcndemo_frame Implement a frame-based A/D converter.
sfun_frmda.c sfcndemo_frame Implement a frame-based D/A converter.
sfun_frmdft.c sfcndemo_frame Implement a multichannel frame-based

Discrete-Fourier transformation (and its
inverse).

sfun_frmunbuff.c sfcndemo_frame Implement a frame-based unbuffer block.
sfun_multiport.c sfcndemo_sfun_multiport Configure multiple input and output ports.
sfun_manswitch.c No model available Implement a manual switch.
sfun_matadd.c sfcndemo_matadd Add matrices in an S-function with one

input port, one output port, and one
parameter.

sfun_multirate.c sfcndemo_sfun_multirate Demonstrate how to specify port-based
sample times.

sfun_port_constant.csfcndemo_port_constant Demonstrate how to specify constant port-
based sample times.

sfun_port_triggered.csfcndemo_port_triggered Demonstrate how to use port-based
sample times in a triggered subsystem.

sfun_runtime1.c sfcndemo_runtime Implement run-time parameters for all
tunable parameters.

sfun_runtime2.c sfcndemo_runtime Register individual run-time parameters.
sfun_runtime3.c sfcndemo_runtime Register dialog parameters as run-time

parameters.
sfun_runtime4.c sfcndemo_runtime Implement run-time parameters as a

function of multiple dialog parameters.

1-32

 S-Function Examples

Filename Model Name Description

sfun_simstate.c sfcndemo_sfun_simstate Demonstrate the S-function API for saving
and restoring the SimState.

sfun_zc.c sfcndemo_sfun_zc Demonstrate use of nonsampled zero
crossings to implement abs(u). This S-
function is designed to be used with a
variable-step solver.

sfun_zc_sat.c sfcndemo_sfun_zc_sat Demonstrate zero crossings with
saturation.

sfunmem.c sfcndemo_sfunmem Implement a one-integration-step delay
and hold memory function.

simomex.c sfcndemo_simomex Implement a single-input, two-output
state-space dynamic system described by
the state-space equations:

dx/dt = Ax + Bu

y = Cx + Du

where x is the state vector, u is vector of
inputs, and y is the vector of outputs.

stspace.c sfcndemo_stspace Implement a set of state-space equations.
You can turn this into a new block by
using the S-Function block and mask
facility. This example MEX file performs
the same function as the built-in State-
Space block. This is an example of a MEX
file where the number of inputs, outputs,
and states is dependent on the parameters
passed in from the workspace.

stvctf.c sfcndemo_stvctf Implement a continuous-time transfer
function whose transfer function
polynomials are passed in via the input
vector. This is useful for continuous time
adaptive control applications.

1-33

1 Overview of S-Functions

Filename Model Name Description

stvdtf.c sfcndemo_stvdtf Implement a discrete-time transfer
function whose transfer function
polynomials are passed in via the input
vector. This is useful for discrete-time
adaptive control applications.

stvmgain.c sfcndemo_stvmgain Implement a time-varying matrix gain.
table3.c No model available Implement a 3-D lookup table.
timestwo.c sfcndemo_timestwo Implement a C MEX S-function that

doubles its input.
vdlmintc.c No model available Implement a discrete-time vectorized

limited integrator.
vdpmex.c sfcndemo_vdpmex Implement the Van der Pol equation.
vlimintc.c No model available Implement a vectorized limited integrator.
vsfunc.c sfcndemo_vsfunc Illustrate how to create a variable sample

time block. This block implements a
variable-step delay in which the first
input is delayed by an amount of time
determined by the second input.

Fortran S-Function Examples

The following table lists sample Fortran S-functions available in the matlabroot/
toolbox/simulink/simdemos/simfeatures/src folder (open).

Filename Model Name Description

sfun_timestwo_for.F sfcndemo_timestwo_for Implement a Level-1 Fortran
S-function that represents the
timestwo.c S-function.

sfun_atmos.c

sfun_atmos_sub.F

sfcndemo_atmos Calculate the 1976 standard
atmosphere to 86 km using a Fortran
subroutine.

1-34

 S-Function Examples

C++ S-Function Examples

The following table lists sample C++ S-functions available in the matlabroot/
toolbox/simulink/simdemos/simfeatures/src folder (open).

Filename Model Name Description

sfun_counter_cpp.cpp sfcndemo_counter_cpp Store a C++ object in the pointers
vector PWork.

1-35

2

Selecting an S-Function
Implementation

• “Available S-Function Implementations” on page 2-2
• “S-Function Types” on page 2-3
• “Implement S-Functions” on page 2-4
• “S-Function Features” on page 2-6
• “S-Function Limitations” on page 2-10
• “S-Functions Incorporate Legacy C Code” on page 2-12

2 Selecting an S-Function Implementation

Available S-Function Implementations

You can implement your S-function in one of five ways:

• A Level-1 MATLAB S-function provides a simple MATLAB interface to interact
with a small portion of the S-function API. Level-2 MATLAB S-functions supersede
Level-1 MATLAB S-functions.

• A Level-2 MATLAB S-function provides access to a more extensive set of the S-
function API and supports code generation. In most cases, use a Level-2 MATLAB S-
function when you want to implement your S-function in MATLAB.

• A handwritten C MEX S-function provides the most programming flexibility. You
can implement your algorithm as a C MEX S-function or write a wrapper S-function
to call existing C, C++, or Fortran code. Writing a new S-function requires knowledge
of the S-function API and, if you want to generate inlined code for the S-function, the
Target Language Compiler (TLC).

• The S-Function Builder is a graphical user interface for programming a subset of
S-function functionality. If you are new to writing C MEX S-functions, you can use
the S-Function Builder to generate new S-functions or incorporate existing C or C
++ code without interacting with the S-function API. The S-Function Builder can
also generate TLC files for inlining your S-function during code generation with the
Simulink Coder product.

• The Legacy Code Tool is a set of MATLAB commands that helps you create an S-
function to incorporate legacy C or C++ code. Like the S-Function Builder, the Legacy
Code Tool can generate a TLC file to inline your S-function during code generation.
The Legacy Code Tool provides access to fewer of the methods in the S-function API
than the S-Function Builder or a handwritten C MEX S-function.

The following sections describe the uses, features, and differences of these S-function
implementations. The last section compares using a handwritten C MEX S-function, the
S-Function Builder, and the Legacy Code Tool to incorporate an existing C function into
your Simulink model.

2-2

 S-Function Types

S-Function Types

Consider the following questions if you are unclear about what type of S-function is best
for your application.

If you... Then use...

Are a MATLAB programmer with little or
no C programming experience

A Level-2 MATLAB S-function, especially if you do not
need to generate code for a model containing the S-
function (see “Write Level-2 MATLAB S-Functions” on
page 3-3).

Need to generate code for a model
containing the S-function

Either a Level-2 MATLAB S-function or a C MEX
S-functions. Level-2 MATLAB S-functions require
that you write a Target Language Compiler (TLC) file
for your S-function, before generating code. C MEX
S-functions, however, automatically support code
generation.

Need the simulation to run faster A C MEX S-function, even if you do not need to
generate code (see “Creating C MEX S-Functions”
on page 4-4). For complicated systems, Level-2
MATLAB S-functions simulate slower than C MEX
S-functions because they call out to the MATLAB
execution engine.

Need to implement the S-function in C,
but have no previous experience writing C
MEX S-functions

The S-Function Builder.

Are incorporating legacy code into the
model

Any S-function, with the exception of a Level-1
MATLAB S-function. Consider using the Legacy Code
Tool if your legacy function calculates only outputs,
not dynamic states (see “Integrate C Functions Using
Legacy Code Tool” on page 4-43). Otherwise,
consider using the S-Function Builder. If you need to
call the legacy code during simulation, do not use a
Level-2 MATLAB S-function because they call legacy
code only through their TLC files.

Need to generate embeddable code for an
S-function that incorporates legacy code

The Legacy Code Tool if your legacy function
calculates only outputs. Otherwise, use a handwritten
C MEX S-function or the S-Function Builder.

2-3

2 Selecting an S-Function Implementation

Implement S-Functions

The following table gives an overview of how to write different types of S-functions.
See the associated sections of the S-function documentation for more details on how to
implement S-functions using a particular method.

Note For backward compatibility, the following table and sections contain information
about Level-1 MATLAB S-functions. However, use the Level-2 MATLAB S-function API
to develop new MATLAB S-functions.

S-Function Type Implementation

Level-1 MATLAB S-
function

Use the following template to write a new Level-1 MATLAB S-function:
sfuntmpl.m
See “Maintain Level-1 MATLAB S-Functions” on page 3-12 for more
information.

Level-2 MATLAB S-
function

1 Use the msfuntmpl_basic.m template to write a new Level-2
MATLAB S-function:

See “Write Level-2 MATLAB S-Functions” on page 3-3 for more
information.

2 Write a Target Language Compiler (TLC) file for the S-function if you
need to generate code for a model containing the S-function. The file,
msfcn_times_two.tlc in the folder is an example TLC file for the S-
function msfcn_times_two.m. See “Inline MATLAB File S-Functions”
(Simulink Coder) for information on writing TLC files for Level-2
MATLAB S-functions.

Hand-written C
MEX S-function

1 Use the sfuntmpl_doc.c template to write a new C MEX S-function
(see “Basic C MEX S-Function” on page 4-33) or to write a wrapper
S-function that calls C, C++, or Fortran code.

For information on writing wrapper S-functions to incorporate legacy C
or C++ code, see “Write Wrapper S-Function and TLC Files” (Simulink
Coder). For information on writing a wrapper function to incorporate
legacy Fortran code, see “Constructing the Gateway” on page 6-6.

2 Compile the S-function using the mex command to obtain an executable
to use during simulation.

2-4

 Implement S-Functions

S-Function Type Implementation

3 Write a TLC file for the S-function if you want to inline the code during
code generation (see “Write Fully Inlined S-Functions with mdlRTW
Routine” (Simulink Coder) and “Introduction to the Target Language
Compiler” (Simulink Coder)). You do not need a TLC file if you are not
inlining the S-function in the generated code.

S-Function Builder 1 Enter the S-function attributes into the S-Function Builder dialog box
(see “S-Function Builder Dialog Box” on page 4-11).

2 Select the Generate wrapper TLC option to generate a TLC file to
inline the S-function during code generation.

3 Click Build to generate the S-function, TLC file, and an executable file
to use during simulation.

Legacy Code Tool Use the legacy_code function to perform the following steps (see
“Integrate C Functions Using Legacy Code Tool” on page 4-43):

1 Initialize a data structure that describes the S-function attributes in
terms of the legacy function.

lct_spec = legacy_code('initialize');

2 Generate and compile the wrapper S-function.

legacy_code('sfcn_cmex_generate', lct_spec);

legacy_code('compile', lct_spec);

3 Instantiate an S-Function block that calls the S-function wrapper.

legacy_code('slblock_generate', lct_spec);

4 Generate a TLC file to inline the S-function during code generation.

legacy_code('sfcn_tlc_generate', lct_spec);

2-5

2 Selecting an S-Function Implementation

S-Function Features

The following tables give overviews of the features supported by different types of S-
functions. The first table focuses on handwritten S-functions. The second table compares
the features of S-functions automatically generated by the S-Function Builder or Legacy
Code Tool.

Features of Hand-Written S-Functions

Feature Level-1 MATLAB S-Function Level-2 MATLAB S-Function Handwritten C MEX S-Function

Data types Supports signals with a
data type of double.

Supports any data type
supported by Simulink
software, including
fixed-point types.

Supports any data type
supported by Simulink
software, including fixed-
point types.

Numeric
types

Supports only real signals. Supports real and
complex signals.

Supports real and complex
signals.

Frame
support

Does not support frame-
based signals.

Supports framed and
unframed signals.

Supports framed and
unframed signals.

Port
dimensions

Supports vector inputs and
outputs. Does not support
multiple input and output
ports.

Supports scalar, 1-D,
and multidimensional
input and output
signals.

Supports scalar, 1-D, and
multidimensional input and
output signals.

S-function
API

Supports only
mdlInitializeSizes,
mdlDerivatives,
mdlUpdate, mdlOutputs,
mdlGetTimeOfNextVarHit,
and mdlTerminate.

Supports a larger set
of the S-function API.
See “Level-2 MATLAB
S-Function Callback
Methods” on page
3-5 for a list of
supported methods.

Supports the entire S-
function API.

Code
generation
support

Does not support code
generation.

Requires a handwritten
TLC file to generate
code.

Natively supports code
generation. Requires a
handwritten TLC file to
inline the S-function during
code generation.

Simulink
Accelerator
mode

Runs interpretively and is,
therefore, not accelerated.

Provides the option
to use a TLC file in
Accelerator mode,

Provides the option to
use a TLC or MEX file in
Accelerator mode.

2-6

 S-Function Features

Feature Level-1 MATLAB S-Function Level-2 MATLAB S-Function Handwritten C MEX S-Function

instead of running
interpretively.

Model
reference

Cannot be used in a
referenced model.

Supports Normal and
Accelerator mode
simulations when used
in a referenced model.
Requires a TLC file for
Accelerator mode.

Provides options for sample
time inheritance and
Normal mode support when
used in a referenced model.
See “Model Referencing
Limitations”

Simulink.

AliasType

and
Simulink.

NumericType

support

Does not support these
classes.

Supports
Simulink.NumericType

and
Simulink.AliasType

classes (see “Custom
Data Types” on page
8-25).

Supports all of these classes
(see “Custom Data Types” on
page 8-25).

Bus input
and output
signals

Does not support bus input
or output signals.

Does not support bus
input or output signals.

Supports nonvirtual bus
input or output signals.

Tunable and
run-time
parameters

Supports tunable
parameters during
simulation. Does not
support run-time
parameters.

Supports tunable and
run-time parameters.

Supports tunable and run-
time parameters.

Work vectors Does not support work
vectors.

Supports DWork vectors
(see “Using DWork
Vectors in Level-2
MATLAB S-Functions”
on page 7-11).

Supports all work vector
types (see “Types of DWork
Vectors” on page 7-5).

Features of Automatically Generated S-Functions

Feature S-Function Builder Legacy Code Tool

Data types Supports any data type supported
by Simulink software, including
fixed-point types.

Supports all built-in data types.
To use a fixed-point data type, you
must specify the data type as a
Simulink.NumericType. You

2-7

2 Selecting an S-Function Implementation

Feature S-Function Builder Legacy Code Tool

cannot use a fixed-point type with
unspecified scaling.

Numeric types Supports real and complex signals. Supports complex signals only for
built-in data types.

Frame support Supports framed and unframed
signals.

Does not support frame-based
signals.

Port dimensions Supports scalar, 1-D, and
multidimensional input and
output signals.

Supports scalar, 1-D, and
multidimensional input and
output signals.

S-function API Supports creation of custom
mdlInitializeSizes,
mdlInitializeSampleTimes,
mdlDerivatives, mdlUpdate,
and mdlOutputs. Also allows for
automatic generation of mdlStart
and mdlTerminate.

Supports mdlInitializeSizes,
mdlInitializeSampleTimes,
mdlStart,
mdlInitializeConditions,
mdlOutputs, and mdlTerminate.

Code generation support Natively supports code generation.
Also, automatically generates a
TLC file for inlining the S-function
during code generation.

Natively supports code generation
optimized for embedded systems.
Also, automatically generates a
TLC file that supports expression
folding for inlining the S-function
during code generation.

Simulink Accelerator™
mode

Uses a TLC file in Accelerator
mode, if the file was generated.
Otherwise, uses the MEX file.

Provides the option to use a TLC
or MEX file in Accelerator mode.

Model reference Uses default behaviors when used
in a referenced model.

Uses default behaviors when used
in a referenced model.

Simulink.AliasType

and
Simulink.NumericType

Does not support these classes. Supports Simulink.AliasType
and Simulink.NumericType.

Bus input and output
signals

Supports bus input and output
signals. See sfbuilder_bususage for
an example.

Supports bus input and output
signals. You must define a
Simulink.Bus object in the
MATLAB workspace that is
equivalent to the structure of

2-8

 S-Function Features

Feature S-Function Builder Legacy Code Tool

the input or output used in the
legacy code. Does not support bus
parameters.

Tunable and run-time
parameters

Supports tunable parameters only
during simulation. Supports run-
time parameters.

Supports tunable and run-time
parameters.

Work vectors Does not provide access to work
vectors.

Supports DWork vectors
with the usage type
SS_DWORK_USED_AS_DWORK. See
“Types of DWork Vectors” on page
7-5 for a discussion on the
different DWork vector usage
types.

2-9

2 Selecting an S-Function Implementation

S-Function Limitations

The following table summarizes the major limitations of the different types of S-
functions.

Implementation Limitations

Level-1 MATLAB S-
function

Does not support the majority of S-function features. See the “S-
Function Features” on page 2-6 section for information on what features
a Level-1 MATLAB S-function does support.

Level-2 MATLAB S-
functions

• Does not support bus input and output signals.
• Cannot incorporate legacy code during simulation, only during code

generation through a TLC file.
Handwritten C MEX S-
function

Supports model referencing with some limitations. See “S-Functions
with Referenced Models” and S-Function Limitations in “Model
Referencing Limitations”.

S-Function Builder • Generates S-function code using a wrapper function which incurs
additional overhead.

• Does not support the following S-function features:

• Work vectors
• Port-based sample times
• Multiple sample times or a nonzero offset time
• Dynamically-sized input and output signals for an S-function with

multiple input and output ports

Note: S-functions with one input and one output port can have
dynamically-sized signals

Legacy Code Tool • Generates C MEX S-functions for existing functions written in C or
C++ only. The tool does not support transformation of MATLAB or
Fortran functions.

• Can interface with C++ functions, but not C++ objects.
• Does not support simulating continuous or discrete states.
• Does not support use of function pointers as the output of the legacy

function being called.

2-10

 S-Function Limitations

Implementation Limitations

• Always sets the S-function's flag for direct feedthrough on page 1-20
(sizes.DirFeedthrough) to true.

• Supports only the continuous, but fixed in minor time step, sample
time and offset on page 1-22 option.

• Supports complex numbers, but only with Simulink built-in data
types.

• Does not support the following S-function features:

• Work vectors, other than general DWork vectors
• Frame-based input and output signals
• Port-based sample times
• Multiple block-based sample times

2-11

2 Selecting an S-Function Implementation

S-Functions Incorporate Legacy C Code

In this section...

“Overview” on page 2-12
“Using a Hand-Written S-Function to Incorporate Legacy Code” on page 2-13
“Using the S-Function Builder to Incorporate Legacy Code” on page 2-15
“Using the Legacy Code Tool to Incorporate Legacy Code” on page 2-18

Overview

C MEX S-functions allow you to call existing C code within your Simulink models. For
example, consider the simple C function doubleIt.c that outputs a value two times the
value of the function input.

double doubleIt(double u)

{

 return(u * 2.0);

}

You can create an S-function that calls doubleIt.c by either:

• Writing a wrapper S-function. Using this method, you hand write a new C S-
function and associated TLC file. This method requires the most knowledge about the
structure of a C S-function.

• Using an S-Function Builder block. Using this method, you enter the characteristics
of the S-function into a block dialog. This method does not require any knowledge
about writing S-functions. However, a basic understanding of the structure of an S-
function can make the S-Function Builder dialog box easier to use.

• Using the Legacy Code Tool. Using this command line method, you define the
characteristics of your S-function in a data structure in the MATLAB workspace. This
method requires the least amount of knowledge about S-functions.

You can also call external C code from a Simulink model using a MATLAB Function
block. For more information see “Integrate C Code Using the MATLAB Function Block”.

The following sections describe how to create S-functions for use in a Simulink
simulation and with Simulink Coder code generation, using the previous three methods.
The model sfcndemo_choosing_sfun contains blocks that use these S-functions.
Copy this model and the files doubleIt.c and doubleIt.h from the folder docroot/

2-12

 S-Functions Incorporate Legacy C Code

toolbox/simulink/sfg/examples into your working folder if you plan to step
through the examples.

Using a Hand-Written S-Function to Incorporate Legacy Code

The S-function wrapsfcn.c calls the legacy function doubleIt.c in its mdlOutputs
method. Save the wrapsfcn.c file into your working folder, if you are planning to
compile the S-function to run in the example model sfcndemo_choosing_sfun.

To incorporate the legacy code into the S-function, wrapsfcn.c begins by declaring
doubleIt.c with the following line:

extern real_T doubleIt(real_T u);

2-13

2 Selecting an S-Function Implementation

Once declared, the S-function can use doubleIt.c in its mdlOutputs method. For
example:
/* Function: mdlOutputs =======================================

 * Abstract:

 * Calls the doubleIt.c function to multiple the input by 2.

 */

static void mdlOutputs(SimStruct *S, int tid){

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 *y = doubleIt(*uPtrs[0]);

}

To compile the wrapsfcn.c S-function, run the following mex command. Make sure that
the doubleIt.c file is in your working folder.

mex wrapsfcn.c doubleIt.c

To generate code for the S-function using the Simulink Coder code generator, you need
to write a Target Language Compiler (TLC) file. The following TLC file wrapsfcn.tlc
uses the BlockTypeSetup function to declare a function prototype for doubleIt.c. The
TLC file's Outputs function then tells the Simulink Coder code generator how to inline
the call to doubleIt.c. For example:
%implements "wrapsfcn" "C"

%% File : wrapsfcn.tlc

%% Abstract:

%% Example tlc file for S-function wrapsfcn.c

%%

%% Function: BlockTypeSetup ================================

%% Abstract:

%% Create function prototype in model.h as:

%% "extern double doubleIt(double u);"

%%

%function BlockTypeSetup(block, system) void

 %openfile buffer

 %% PROVIDE ONE LINE OF CODE AS A FUNCTION PROTOTYPE

 extern double doubleIt(double u);

 %closefile buffer

 %<LibCacheFunctionPrototype(buffer)>

 %%endfunction %% BlockTypeSetup

%% Function: Outputs =======================================

%% Abstract:

%% CALL LEGACY FUNCTION: y = doubleIt(u);

%%

2-14

 S-Functions Incorporate Legacy C Code

%function Outputs(block, system) Output

 /* %<Type> Block: %<Name> */

 %assign u = LibBlockInputSignal(0, "", "", 0)

 %assign y = LibBlockOutputSignal(0, "", "", 0)

 %% PROVIDE THE CALLING STATEMENT FOR "doubleIt"

 %<y> = doubleIt(%<u>);

%endfunction %% Outputs

For more information on the TLC, see “Introduction to the Target Language Compiler”
(Simulink Coder).

Using the S-Function Builder to Incorporate Legacy Code

The S-Function Builder automates the creation of S-functions and TLC files that
incorporate legacy code. For this example, in addition to doubleIt.c, you need the
header file doubleIt.h that declares the doubleIt.c function format, as follows:

extern real_T doubleIt(real_T in1);

The S-Function Builder block in sfcndemo_choosing_sfun shows how to configure
the block dialog to call the legacy function doubleIt.c. In the S-Function Builder block
dialog:

• The S-function name field in the Parameters pane defines the name
builder_wrapsfcn for the generated S-function.

• The Data Properties pane names the input and output ports as in1 and out1,
respectively.

• The Libraries pane provides the interface to the legacy code.

• The Library/Object/Source files field contains the source file name
doubleIt.c.

• The Includes field contains the following line to include the header file that
declares the legacy function:

#include <doubleIt.h>

• The Outputs pane calls the legacy function with the lines:

/* Call function that multiplies the input by 2 */

 *out1 = doubleIt(*in1);

2-15

2 Selecting an S-Function Implementation

• The Build Info pane selects the Generate wrapper TLC option.

When you click Build, the S-Function Builder generates three files.

File Name Description

builder_wrapsfcn.c The main S-function.
builder_wrapsfcn_wrapper.c A wrapper file containing separate functions for

the code entered in the Outputs, Continuous
Derivatives, and Discrete Updates panes of
the S-Function Builder.

builder_wrapsfcn.tlc The S-function's TLC file.

The builder_wrapsfcn.c file follows a standard format:

• The file begins with a set of #define statements that incorporate the information
from the S-Function Builder. For example, the following lines define the first input
port:
#define NUM_INPUTS 1

/* Input Port 0 */

#define IN_PORT_0_NAME in1

#define INPUT_0_WIDTH 1

#define INPUT_DIMS_0_COL 1

#define INPUT_0_DTYPE real_T

#define INPUT_0_COMPLEX COMPLEX_NO

#define IN_0_FRAME_BASED FRAME_NO

#define IN_0_DIMS 1-D

#define INPUT_0_FEEDTHROUGH 1

• Next, the file declares all the wrapper functions found in the
builder_wrapsfcn_wrapper.c file. This example requires only a wrapper function
for the Outputs code.
extern void builder_wrapsfcn_Outputs_wrapper(const real_T *in1,

 real_T *out1);

• Following these definitions and declarations, the file contains the S-function methods,
such as mdlInitializeSizes, that initialize the S-function's input ports, output
ports, and parameters. See “Process View” on page 4-67 for a list of methods that
are called during the S-function initialization phase.

• The file mdlOutputs method calls the builder_wrapsfcn_wrapper.c function.
The method uses the input and output names in1 and out1, as defined in the Data
Properties pane, when calling the wrapper function. For example:
/* Function: mdlOutputs ===

2-16

 S-Functions Incorporate Legacy C Code

 *

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

 const real_T *in1 = (const real_T*) ssGetInputPortSignal(S,0);

 real_T *out1 = (real_T *)ssGetOutputPortRealSignal(S,0);

 builder_wrapsfcn_Outputs_wrapper(in1, out1);

}

• The file builder_wrapsfcn.c concludes with the required mdlTerminate method.

The wrapper function builder_wrapsfcn_wrapper.c has three parts:

• The Include Files section includes the doubleIt.h file, along with the standard
S-function header files:
/*

 * Include Files

 *

 */

#if defined(MATLAB_MEX_FILE)

#include "tmwtypes.h"

#include "simstruc_types.h"

#else

#include "rtwtypes.h"

#endif

/* %%%-SFUNWIZ_wrapper_includes_Changes_BEGIN --- EDIT HERE TO _END */

#include <math.h>

#include <doubleIt.h>

/* %%%-SFUNWIZ_wrapper_includes_Changes_END --- EDIT HERE TO _BEGIN */

• The External References section contains information from the External
reference declarations field on the Libraries pane. This example does not use this
section.

• The Output functions section declares the function
builder_wrapfcn_Outputs_wrapper, which contains the code entered in the S-
Function Builder block dialog's Outputs pane:
/*

 * Output functions

 *

 */

void builder_wrapfcn_Outputs_wrapper(const real_T *in1,

 real_T *out1)

{

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_BEGIN --- EDIT HERE TO _END */

/* Call function that multiplies the input by 2 */

 *out1 = doubleIt(*in1);

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_END --- EDIT HERE TO _BEGIN */

}

2-17

2 Selecting an S-Function Implementation

Note Compared to a handwritten S-function, the S-Function Builder places the
call to the legacy C function down an additional level through the wrapper file
builder_wrapsfcn_wrapper.c.

The TLC file builder_wrapsfcn.tlc generated by the S-Function Builder is
similar to the previous handwritten version. The file declares the legacy function in
BlockTypeSetup and calls it in the Outputs method.

%implements builder_wrapsfcn "C"

%% Function: BlockTypeSetup ====================================

%%

%% Purpose:

%% Set up external references for wrapper functions in the

%% generated code.

%%

%function BlockTypeSetup(block, system) Output

 %openfile externs

 extern void builder_wrapsfcn_Outputs_wrapper(const real_T *in1,

 real_T *out1);

 %closefile externs

 %<LibCacheExtern(externs)>

 %%

%endfunction

%% Function: Outputs ===

%%

%% Purpose:

%% Code generation rules for mdlOutputs function.

%%

%function Outputs(block, system) Output

 /* S-Function "builder_wrapsfcn_wrapper" Block: %<Name> */

 %assign pu0 = LibBlockInputSignalAddr(0, "", "", 0)

 %assign py0 = LibBlockOutputSignalAddr(0, "", "", 0)

 %assign py_width = LibBlockOutputSignalWidth(0)

 %assign pu_width = LibBlockInputSignalWidth(0)

 builder_wrapsfcn_Outputs_wrapper(%<pu0>, %<py0>);

 %%

%endfunction

Using the Legacy Code Tool to Incorporate Legacy Code

The section “Integrate C Functions into Simulink Models with Legacy Code Tool” on
page 4-46 in “Writing S-Functions in C” shows how to use the Legacy Code Tool
to create an S-function that incorporates doubleIt.c. For a script that performs the
steps in that example, copy the file lct_wrapsfcn.m to your working folder. Make

2-18

 S-Functions Incorporate Legacy C Code

sure that the doubleIt.c and doubleIt.h files are in your working folder then run
the script by typing lct_wrapsfcn at the MATLAB command prompt. The script
creates and compiles the S-function legacy_wrapsfcn.c and creates the TLC file
legacy_wrapsfcn.tlc via the following commands.

% Create the data structure

def = legacy_code('initialize');

% Populate the data struture

def.SourceFiles = {'doubleIt.c'};

def.HeaderFiles = {'doubleIt.h'};

def.SFunctionName = 'legacy_wrapsfcn';

def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

def.SampleTime = [-1,0];

% Generate the S-function

legacy_code('sfcn_cmex_generate', def);

% Compile the MEX-file

legacy_code('compile', def);

% Generate a TLC-file

legacy_code('sfcn_tlc_generate', def);

The S-function legacy_wrapsfcn.c generated by the Legacy Code Tool begins by
including the doubleIt.h header file. The mdlOutputs method then directly calls the
doubleIt.c function, as follows:

static void mdlOutputs(SimStruct *S, int_T tid)

{

 /*

 * Get access to Parameter/Input/Output/DWork/size information

 */

 real_T *u1 = (real_T *) ssGetInputPortSignal(S, 0);

 real_T *y1 = (real_T *) ssGetOutputPortSignal(S, 0);

 /*

 * Call the legacy code function

 */

 *y1 = doubleIt(*u1);

}

The S-function generated by the Legacy Code Tool differs from the S-function generated
by the S-Function Builder as follows:

• The S-function generated by the S-Function Builder calls the legacy function
doubleIt.c through the wrapper function builder_wrapsfcn_wrapper.c. The
S-function generated by the Legacy Code Tool directly calls doubleIt.c from its
mdlOutputs method.

2-19

2 Selecting an S-Function Implementation

• The S-Function Builder uses the input and output names entered into the Data
Properties pane, allowing you to customize these names in the S-function. The
Legacy Code Tool uses the default names y and u for the outputs and inputs,
respectively. You cannot specify customized names to use in the generated S-function
when using the Legacy Code Tool.

• The S-Function Builder and Legacy Code Tool both specify an inherited sample time,
by default. However, the S-Function Builder uses an offset time of 0.0 while the
Legacy Code Tool specifies that the offset time is fixed in minor time steps.

The TLC file legacy_wrapsfcn.tlc supports expression folding by defining
BlockInstanceSetup and BlockOutputSignal functions. The TLC file also contains
a BlockTypeSetup function to declare a function prototype for doubleIt.c and an
Outputs function to tell the Simulink Coder code generator how to inline the call to
doubleIt.c.:
%% Function: BlockTypeSetup ===

%%

%function BlockTypeSetup(block, system) void

 %%

 %% The Target Language must be C

 %if ::GenCPP==1

 %<LibReportFatalError("This S-Function generated by the Legacy Code Tool

 must be only used with the C Target Language")>

 %endif

 %<LibAddToCommonIncludes("doubleIt.h")>

 %<LibAddToModelSources("doubleIt")>

%%

%endfunction

%% Function: BlockInstanceSetup ===

%%

%function BlockInstanceSetup(block, system) void

 %%

 %<LibBlockSetIsExpressionCompliant(block)>

 %%

%endfunction

%% Function: Outputs ==

%%

%function Outputs(block, system) Output

 %%

 %if !LibBlockOutputSignalIsExpr(0)

 %assign u1_val = LibBlockInputSignal(0, "", "", 0)

 %assign y1_val = LibBlockOutputSignal(0, "", "", 0)

 %%

%<y1_val = doubleIt(%<u1_val>);

 %endif

 %%

%endfunction

2-20

 S-Functions Incorporate Legacy C Code

%% Function: BlockOutputSignal ==

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

 %%

 %assign u1_val = LibBlockInputSignal(0, "", "", 0)

 %assign y1_val = LibBlockOutputSignal(0, "", "", 0)

 %%

 %switch retType

 %case "Signal"

 %if portIdx == 0

 %return "doubleIt(%<u1_val>)"

 %else

 %assign errTxt = "Block output port index not supported: %<portIdx>"

%endif

 %default

 %assign errTxt = "Unsupported return type: %<retType>"

 %<LibBlockReportError(block,errTxt)>

 %endswitch

2-21

3

Writing S-Functions in MATLAB

• “Custom Blocks using MATLAB S-Functions” on page 3-2
• “Write Level-2 MATLAB S-Functions” on page 3-3
• “Maintain Level-1 MATLAB S-Functions” on page 3-12

3 Writing S-Functions in MATLAB

Custom Blocks using MATLAB S-Functions

You can create custom blocks whose properties and behaviors are defined by MATLAB
functions called MATLAB S-functions. The Level-2 MATLAB S-function application
programming interface (API) allows you to create blocks that have many of the features
and capabilities of Simulink built-in blocks, including:

• Multiple input and output ports
• 1-D, 2-D, and n-D input and output signals
• All data types supported by the Simulink software
• Real or complex signals
• Frame-based signals
• Multiple sample rates
• User-defined data and work vectors
• Tunable and run-time parameters

Note: Level-2 MATLAB S-functions do not support zero-crossing detection.

For information on how to write a Level-2 MATLAB S-functions, see “Write Level-2
MATLAB S-Functions” on page 3-3.

If you have Simulink Coder, you can generate code for Level-2 MATLAB S-functions if
they are inlined. For more information, see “Inlining S-Functions” (Simulink Coder).

Note: This version of the Simulink software also supports a predecessor API known as
the Level-1 MATLAB S-function. This ensures that you can simulate models developed
with earlier releases that use Level-1 MATLAB S-functions in their S-Function blocks
(see “Maintain Level-1 MATLAB S-Functions” on page 3-12). Level-1 MATLAB S-
functions support a much smaller subset of the S-function API then Level-2 MATLAB
S-functions, and their features are limited compared to built-in blocks. Use the Level-2
API, not the Level-1 API, to develop new MATLAB S-functions.

3-2

 Write Level-2 MATLAB S-Functions

Write Level-2 MATLAB S-Functions

In this section...

“About Level-2 MATLAB S-Functions” on page 3-3
“About Run-Time Objects” on page 3-4
“Level-2 MATLAB S-Function Template” on page 3-4
“Level-2 MATLAB S-Function Callback Methods” on page 3-5
“Using the setup Method” on page 3-6
“Example of Writing a Level-2 MATLAB S-Function” on page 3-7
“Instantiating a Level-2 MATLAB S-Function” on page 3-10
“Operations for Variable-Size Signals” on page 3-11
“Generating Code from a Level-2 MATLAB S-Function” on page 3-11
“MATLAB S-Function Examples” on page 3-11

About Level-2 MATLAB S-Functions

The Level-2 MATLAB S-function API allows you to use the MATLAB language to create
custom blocks with multiple input and output ports and capable of handling any type of
signal produced by a Simulink model, including matrix and frame signals of any data
type. The Level-2 MATLAB S-function API corresponds closely to the API for creating
C MEX S-functions. Much of the documentation for creating C MEX S-functions applies
also to Level-2 MATLAB S-functions. To avoid duplication, this section focuses on
providing information that is specific to writing Level-2 MATLAB S-functions.

A Level-2 MATLAB S-function is MATLAB function that defines the properties and
behavior of an instance of a Level-2 MATLAB S-Function block that references the
MATLAB function in a Simulink model. The MATLAB function itself comprises a set of
callback methods (see “Level-2 MATLAB S-Function Callback Methods” on page 3-5)
that the Simulink engine invokes when updating or simulating the model. The callback
methods perform the actual work of initializing and computing the outputs of the block
defined by the S-function.

To facilitate these tasks, the engine passes a run-time object to the callback methods
as an argument. The run-time object effectively serves as a MATLAB proxy for the S-
Function block, allowing the callback methods to set and access the block properties
during simulation or model updating.

3-3

3 Writing S-Functions in MATLAB

About Run-Time Objects

When the Simulink engine invokes a Level-2 MATLAB S-function callback method,
it passes an instance of the Simulink.MSFcnRunTimeBlock class to the method as
an argument. This instance, known as the run-time object for the S-Function block,
serves the same purpose for Level-2 MATLAB S-function callback methods as the
SimStruct structure serves for C MEX S-function callback methods. The object enables
the method to provide and obtain information about various elements of the block
ports, parameters, states, and work vectors. The method does this by getting or setting
properties or invoking methods of the block run-time object. See the documentation for
the Simulink.MSFcnRunTimeBlock class for information on getting and setting run-
time object properties and invoking run-time object methods.

Run-time objects do not support MATLAB sparse matrices. For example, if the variable
block is a run-time object, the following line in a Level-2 MATLAB S-function produces
an error:

block.Outport(1).Data = speye(10);

where the speye command forms a sparse identity matrix.

Note Other MATLAB programs besides MATLAB S-functions can use run-time objects
to obtain information about a MATLAB S-function in a model that is simulating. See
“Access Block Data During Simulation” in Using Simulink for more information.

Level-2 MATLAB S-Function Template

Use the basic Level-2 MATLAB S-function template msfuntmpl_basic.m to get a head
start on creating a new Level-2 MATLAB S-function. The template contains skeleton
implementations of the required callback methods defined by the Level-2 MATLAB
S-function API. To write a more complicated S-function, use the annotated template
msfuntmpl.m.

To create a MATLAB S-function, make a copy of the template and edit the copy as
necessary to reflect the desired behavior of the S-function you are creating. The following
two sections describe the contents of the MATLAB code template. The section “Example
of Writing a Level-2 MATLAB S-Function” on page 3-7 describes how to write a
Level-2 MATLAB S-function that models a unit delay.

3-4

 Write Level-2 MATLAB S-Functions

Level-2 MATLAB S-Function Callback Methods

The Level-2 MATLAB S-function API defines the signatures and general purposes of the
callback methods that constitute a Level-2 MATLAB S-function. The S-function itself
provides the implementations of these callback methods. The implementations in turn
determine the block attributes (e.g., ports, parameters, and states) and behavior (e.g.,
the block outputs as a function of time and the block inputs, states, and parameters).
By creating an S-function with an appropriate set of callback methods, you can define a
block type that meets the specific requirements of your application.

A Level-2 MATLAB S-function must include the following callback methods:

• A setup function to initialize the basic S-function characteristics
• An Outputs function to calculate the S-function outputs

Your S-function can contain other methods, depending on the requirements of the
block that the S-function defines. The methods defined by the Level-2 MATLAB S-
function API generally correspond to similarly named methods defined by the C MEX S-
function API. For information on when these methods are called during simulation, see
“Process View” on page 4-67 in “Simulink Engine Interaction with C S-Functions” on
page 4-67. For instructions on how to implement each callback method, see “Write
Callback Methods” on page 4-79.

The following table lists all the Level-2 MATLAB S-function callback methods and their
C MEX counterparts.

Level-2 MATLAB Method Equivalent C MEX Method

setup (see “Using the setup Method”
on page 3-6)

mdlInitializeSizes

CheckParameters mdlCheckParameters

Derivatives mdlDerivatives

Disable mdlDisable

Enable mdlEnable

InitializeConditions mdlInitializeConditions

Outputs mdlOutputs

PostPropagationSetup mdlSetWorkWidths

ProcessParameters mdlProcessParameters

3-5

3 Writing S-Functions in MATLAB

Level-2 MATLAB Method Equivalent C MEX Method

Projection mdlProjection

SetInputPortComplexSignal mdlSetInputPortComplexSignal

SetInputPortDataType mdlSetInputPortDataType

SetInputPortDimensions mdlSetInputPortDimensionInfo

SetInputPortDimensionsModeFcn mdlSetInputPortDimensionsModeFcn

SetInputPortSampleTime mdlSetInputPortSampleTime

SetOutputPortComplexSignal mdlSetOutputPortComplexSignal

SetOutputPortDataType mdlSetOutputPortDataType

SetOutputPortDimensions mdlSetOutputPortDimensionInfo

SetOutputPortSampleTime mdlSetOutputPortSampleTime

SimStatusChange mdlSimStatusChange

Start mdlStart

Terminate mdlTerminate

Update mdlUpdate

WriteRTW mdlRTW

Using the setup Method

The body of the setup method in a Level-2 MATLAB S-function initializes the instance
of the corresponding Level-2 MATLAB S-Function block. In this respect, the setup
method is similar to the mdlInitializeSizes and mdlInitializeSampleTimes
callback methods implemented by C MEX S-functions. The setup method performs the
following tasks:

• Initializing the number of input and output ports of the block.
• Setting attributes such as dimensions, data types, complexity, and sample times for

these ports.
• Specifying the block sample time. See “Specify Sample Time” in Using Simulink for

more information on how to specify valid sample times.
• Setting the number of S-function dialog parameters.
• Registering S-function callback methods by passing the handles of local functions in

the MATLAB S-function to the RegBlockMethod method of the S-Function block's

3-6

 Write Level-2 MATLAB S-Functions

run-time object. See the documentation for Simulink.MSFcnRunTimeBlock for
information on using the RegBlockMethod method.

Example of Writing a Level-2 MATLAB S-Function

The following steps illustrate how to write a simple Level-2 MATLAB S-function.
When applicable, the steps include examples from the S-function example
msfcn_unit_delay.m used in the model msfcndemo_sfundsc2. All lines of code use
the variable name block for the S-function run-time object.

1 Copy the Level-2 MATLAB S-function template msfuntmpl_basic.m to your
working folder. If you change the file name when you copy the file, change the
function name in the function line to the same name.

2 Modify the setup method to initialize the S-function's attributes. For this example:

• Set the run-time object's NumInputPorts and NumOutputPorts properties to 1
in order to initialize one input port and one output port.

• Invoke the run-time object's “SetPreCompInpPortInfoToDynamic” and
“SetPreCompOutPortInfoToDynamic” methods to indicate that the input and
output ports inherit their compiled properties (dimensions, data type, complexity,
and sampling mode) from the model.

• Set the DirectFeedthrough property of the run-time object's InputPort
to false in order to indicate the input port does not have direct feedthrough.
Retain the default values for all other input and output port properties
that are set in your copy of the template file. The values set for the
Dimensions, DatatypeID, and Complexity properties override the
values inherited using the SetPreCompInpPortInfoToDynamic and
SetPreCompOutPortInfoToDynamic methods.

• Set the run-time object's NumDialogPrms property to 1 in order to initialize one
S-function dialog parameter.

• Specify that the S-function has an inherited sample time by setting the value of
the runtime object's SampleTimes property to [-1 0].

• Call the run-time object's RegBlockMethod method to register the following four
callback methods used in this S-function.

• PostPropagationSetup

• InitializeConditions

• Outputs

3-7

3 Writing S-Functions in MATLAB

• Update

Remove any other registered callback methods from your copy of the template
file. In the calls to RegBlockMethod, the first input argument is the name of the
S-function API method and the second input argument is the function handle to
the associated local function in the MATLAB S-function.

The following setup method from msfcn_unit_delay.m performs the previous list
of steps:

function setup(block)

%% Register a single dialog parameter

block.NumDialogPrms = 1;

%% Register number of input and output ports

block.NumInputPorts = 1;

block.NumOutputPorts = 1;

%% Setup functional port properties to dynamically

%% inherited.

block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

%% Hard-code certain port properties

block.InputPort(1).Dimensions = 1;

block.InputPort(1).DirectFeedthrough = false;

block.OutputPort(1).Dimensions = 1;

%% Set block sample time to [0.1 0]

block.SampleTimes = [0.1 0];

%% Register methods

block.RegBlockMethod('PostPropagationSetup',@DoPostPropSetup);

block.RegBlockMethod('InitializeConditions',@InitConditions);

block.RegBlockMethod('Outputs', @Output);

block.RegBlockMethod('Update', @Update);

If your S-function needs continuous states, initialize the number of continuous states
in the setup method using the run-time object's NumContStates property. Do not
initialize discrete states in the setup method.

3-8

 Write Level-2 MATLAB S-Functions

3 Initialize the discrete states in the PostPropagationSetup method. A Level-2
MATLAB S-function stores discrete state information in a DWork vector. The default
PostPropagationSetup method in the template file suffices for this example.

The following PostPropagationSetup method from msfcn_unit_delay.m,
named DoPostPropSetup, initializes one DWork vector with the name x0.

function DoPostPropSetup(block)

 %% Setup Dwork

 block.NumDworks = 1;

 block.Dwork(1).Name = 'x0';

 block.Dwork(1).Dimensions = 1;

 block.Dwork(1).DatatypeID = 0;

 block.Dwork(1).Complexity = 'Real';

 block.Dwork(1).UsedAsDiscState = true;

If your S-function uses additional DWork vectors, initialize them in the
PostPropagationSetup method, as well (see “Using DWork Vectors in Level-2
MATLAB S-Functions” on page 7-11).

4 Initialize the values of discrete and continuous states or other DWork vectors in
the InitializeConditions or Start callback methods. Use the Start callback
method for values that are initialized once at the beginning of the simulation.
Use the InitializeConditions method for values that need to be reinitialized
whenever an enabled subsystem containing the S-function is reenabled.

For this example, use the InitializeConditions method to set the discrete
state's initial condition to the value of the S-function's dialog parameter. For
example, the InitializeConditions method in msfcn_unit_delay.m is:

function InitConditions(block)

 %% Initialize Dwork

 block.Dwork(1).Data = block.DialogPrm(1).Data;

For S-functions with continuous states, use the ContStates run-time object method
to initialize the continuous state date. For example:

 block.ContStates.Data(1) = 1.0;

5 Calculate the S-function's outputs in the Outputs callback method. For this
example, set the output to the current value of the discrete state stored in the
DWork vector.

3-9

3 Writing S-Functions in MATLAB

The Outputs method in msfcn_unit_delay.m is:

function Output(block)

 block.OutputPort(1).Data = block.Dwork(1).Data;

6 For an S-function with continuous states, calculate the state derivatives in the
Derivatives callback method. Run-time objects store derivative data in their
Derivatives property. For example, the following line sets the first state derivative
equal to the value of the first input signal.

block.Derivatives.Data(1) = block.InputPort(1).Data;

This example does not use continuous states and, therefore, does not implement the
Derivatives callback method.

7 Update any discrete states in the Update callback method. For this example, set the
value of the discrete state to the current value of the first input signal.

The Update method in msfcn_unit_delay.m is:

function Update(block)

 block.Dwork(1).Data = block.InputPort(1).Data;

8 Perform any cleanup, such as clearing variables or memory, in the Terminate
method. Unlike C MEX S-functions, Level-2 MATLAB S-function are not required to
have a Terminate method.

For information on additional callback methods, see “Level-2 MATLAB S-Function
Callback Methods” on page 3-5. For a list of run-time object properties, see
the reference page for Simulink.MSFcnRunTimeBlock and the parent class
Simulink.RunTimeBlock.

Instantiating a Level-2 MATLAB S-Function

To use a Level-2 MATLAB S-function in a model, copy an instance of the Level-2
MATLAB S-Functionblock into the model. Open the Block Parameters dialog box for
the block and enter the name of the MATLAB file that implements your S-function into
the S-function name field. If your S-function uses any additional parameters, enter
the parameter values as a comma-separated list in the Block Parameters dialog box
Parameters field.

3-10

 Write Level-2 MATLAB S-Functions

Operations for Variable-Size Signals

Following are modifications to the Level-2 MATLAB S-functions template
(msfuntmpl_basic.m) and additional operations that allow you to use variable-size
signals.
function setup(block)

% Register the properties of the output port

block.OutputPort(1).DimensionsMode = 'Variable';

block.RegBlockMethod('SetInputPortDimensionsMode', @SetInputDimsMode);

function DoPostPropSetup(block)

%Register dependency rules to update current output size of output port a depending on

%input ports b and c

block.AddOutputDimsDependencyRules(a, [b c], @setOutputVarDims);

%Configure output port b to have the same dimensions as input port a

block.InputPortSameDimsAsOutputPort(a,b);

%Configure DWork a to have its size reset when input size changes.

block.DWorkRequireResetForSignalSize(a,true);

function SetInputDimsMode(block, port, dm)

% Set dimension mode

block.InputPort(port).DimensionsMode = dm;

block.OutputPort(port).DimensionsMode = dm;

function setOutputVarDims(block, opIdx, inputIdx)

% Set current (run-time) dimensions of the output

outDimsAfterReset = block.InputPort(inputIdx(1)).CurrentDimensions;

block.OutputPort(opIdx).CurrentDimensions = outDimsAfterReset;

Generating Code from a Level-2 MATLAB S-Function

Generating code for a model containing a Level-2 MATLAB S-function requires that
you provide a corresponding Target Language Compiler (TLC) file. You do not need a
TLC file to accelerate a model containing a Level-2 MATLAB S-function. The Simulink
Accelerator software runs Level-2 MATLAB S-functions in interpreted mode. For more
information on writing TLC files for MATLAB S-functions, see “Inlining S-Functions”
(Simulink Coder) and “Inline MATLAB File S-Functions” (Simulink Coder).

MATLAB S-Function Examples

The Level-2 MATLAB S-function examples provide a set of self-documenting models that
illustrate the use of Level-2 MATLAB S-functions. Enter sfundemos at the MATLAB
command prompt to view the examples.

3-11

3 Writing S-Functions in MATLAB

Maintain Level-1 MATLAB S-Functions

In this section...

“About the Maintenance of Level-1 MATLAB S-Functions” on page 3-12
“Level-1 MATLAB S-Function Arguments” on page 3-13
“Level-1 MATLAB S-Function Outputs” on page 3-14
“Define S-Function Block Characteristics” on page 3-15
“Processing S-Function Parameters” on page 3-15
“Convert Level-1 MATLAB S-Functions to Level-2” on page 3-16

About the Maintenance of Level-1 MATLAB S-Functions

Note The information provided in this section is intended only for use in maintaining
existing Level-1 MATLAB S-functions. Use the more capable Level-2 API to develop new
MATLAB S-functions (see “Write Level-2 MATLAB S-Functions” on page 3-3). Level-1
MATLAB S-functions support a much smaller subset of the S-function API then Level-2
MATLAB S-functions, and their features are limited compared to built-in blocks.

A Level-1 MATLAB S-function is a MATLAB function of the following form

[sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...)

where f is the name of the S-function. During simulation of a model, the Simulink engine
repeatedly invokes f, using the flag argument to indicate the task (or tasks) to be
performed for a particular invocation. The S-function performs the task and returns the
results in an output vector.

A template implementation of a Level-1 MATLAB S-function, sfuntmpl.m, resides
in the folder matlabroot/toolbox/simulink/blocks. The template consists of
a top-level function and a set of skeleton local functions, called S-function callback
methods, each of which corresponds to a particular value of flag. The top-level function
invokes the local function indicated by flag. The local functions perform the actual tasks
required of the S-function during simulation.

3-12

 Maintain Level-1 MATLAB S-Functions

Level-1 MATLAB S-Function Arguments

The Simulink engine passes the following arguments to a Level-1 MATLAB S-function:

t Current time
x State vector
u Input vector
flag Integer value that indicates the task to be performed by the S-

function

The following table describes the values that flag can assume and lists the
corresponding Level-2 MATLAB S-function method for each value.

Flag Argument

Level-1 Flag Level-2 Callback Method Description

0 setup Defines basic S-Function block
characteristics, including sample
times, initial conditions of
continuous and discrete states,
and the sizes array (see “Define
S-Function Block Characteristics”
on page 3-15 for a description
of the sizes array).

1 mdlDerivatives Calculates the derivatives of the
continuous state variables.

2 mdlUpdate Updates discrete states, sample
times, and major time step
requirements.

3 mdlOutputs Calculates the outputs of the S-
function.

4 mdlOutputs method updates the run-
time object NextTimeHit property

Calculates the time of the next
hit in absolute time. This routine
is used only when you specify a
variable discrete-time sample time
in the setup method.

3-13

3 Writing S-Functions in MATLAB

Level-1 Flag Level-2 Callback Method Description

9 mdlTerminate Performs any necessary end-of-
simulation tasks.

Level-1 MATLAB S-Function Outputs

A Level-1 MATLAB S-function returns an output vector containing the following
elements:

• sys, a generic return argument. The values returned depend on the flag value. For
example, for flag = 3, sys contains the S-function outputs.

• x0, the initial state values (an empty vector if there are no states in the system). x0 is
ignored, except when flag = 0.

• str, originally intended for future use. Level-1 MATLAB S-functions must set this to
the empty matrix, [].

• ts, a two-column matrix containing the sample times and offsets of the block (see
“Specify Sample Time” in Using Simulink for information on how to specify a sample
times and offsets).

For example, if you want your S-function to run at every time step (continuous sample
time), set ts to [0 0]. If you want your S-function to run at the same rate as the
block to which it is connected (inherited sample time), set ts to [-1 0]. If you want
it to run every 0.25 seconds (discrete sample time) starting at 0.1 seconds after the
simulation start time, set ts to [0.25 0.1].

You can create S-functions that do multiple tasks, each at a different sample rate
(i.e., a multirate S-function). In this case, ts should specify all the sample rates used
by your S-function in ascending order by sample time. For example, suppose your S-
function performs one task every 0.25 second starting from the simulation start time
and another task every 1 second starting 0.1 second after the simulation start time. In
this case, your S-function should set ts equal to [.25 0; 1.0 .1]. This will cause
the Simulink engine to execute the S-function at the following times: [0 0.1 0.25
0.5 0.75 1 1.1 ...]. Your S-function must decide at every sample time which
task to perform at that sample time.

You can also create an S-function that performs some tasks continuously (i.e., at every
time step) and others at discrete intervals.

3-14

 Maintain Level-1 MATLAB S-Functions

Define S-Function Block Characteristics

For the Simulink engine to recognize a Level-1 MATLAB S-function, you must provide it
with specific information about the S-function. This information includes the number of
inputs, outputs, states, and other block characteristics.

To provide this information, call the simsizes function at the beginning of the S-
function.

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the sizes
structure with information about the S-function. The table below lists the fields of the
sizes structure and describes the information contained in each field.

Fields in the sizes Structure

Field Name Description

sizes.NumContStates Number of continuous states
sizes.NumDiscStates Number of discrete states
sizes.NumOutputs Number of outputs
sizes.NumInputs Number of inputs
sizes.DirFeedthrough Flag for direct feedthrough
sizes.NumSampleTimes Number of sample times

After you initialize the sizes structure, call simsizes again:

sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds the
information for use by the Simulink engine.

Processing S-Function Parameters

When invoking a Level-1 MATLAB S-function, the Simulink engine always passes the
standard block parameters, t, x, u, and flag, to the S-function as function arguments.
The engine can pass additional block-specific parameters specified by the user to the
S-function. The user specifies the parameters in the S-function parameters field of
the S-Function Block Parameters dialog box (see “Passing Parameters to S-Functions”
on page 1-5). If the block dialog specifies additional parameters, the engine passes

3-15

3 Writing S-Functions in MATLAB

the parameters to the S-function as additional function arguments. The additional
arguments follow the standard arguments in the S-function argument list in the order
in which the corresponding parameters appear in the block dialog. You can use this
block-specific S-function parameter capability to allow the same S-function to implement
various processing options. See the limintm.m example in the folder matlabroot/
toolbox/simulink/simdemos/simfeatures for an example of an S-function that
uses block-specific parameters.

Convert Level-1 MATLAB S-Functions to Level-2

You can convert Level-1 MATLAB S-functions to Level-2 MATLAB S-functions by
mapping the code associated with each Level-1 S-function flag to the appropriate Level-2
S-function callback method. See the Flag Arguments table for a mapping of Level-1 flags
to Level-2 callback methods. In addition:

• Store discrete state information for Level-2 MATLAB S-functions in DWork vectors,
initialized in the PostPropagationSetup method.

• Access Level-2 MATLAB S-function dialog parameters using the DialogPrm run-time
object property, instead of passing them into the S-function as function arguments.

• For S-functions with variable sample times, update the NextTimeHit run-time
object property in the Outputs method to set the next sample time hit for the Level-2
MATLAB S-function.

For example, the following table shows how to convert the Level-1 MATLAB S-function
sfundsc2.m to a Level-2 MATLAB S-function. The example uses the Level-2 MATLAB
S-function template msfuntmpl_basic.m as a starting point when converting the
Level-1 MATLAB S-function. The line numbers in the table corresponds to the lines of
code in sfundsc2.m.

Line Number Code in sfundsc2.m Code in Level-2 MATLAB file (sfundsc2_level2.m)

1 function [sys,x0,str,ts]= ...

 sfundsc2(t,x,u,flag)

function sfundsc2(block)

 setup(block);

The syntax for the function line changes to accept
one input argument block, which is the Level-2
MATLAB S-Function block's run-time object. The
main body of the Level-2 MATLAB S-function
contains a single line that calls the local setup
function.

13 - 19 switch flag, function setup(block)

3-16

 Maintain Level-1 MATLAB S-Functions

Line Number Code in sfundsc2.m Code in Level-2 MATLAB file (sfundsc2_level2.m)
case 0,

[sys,x0,str,ts] = ...

 mdlInitializeSizes;

The flag value of zero corresponds to calling the
setup method. A Level-2 MATLAB S-function
does not use a switch statement to invoke the
callback methods. Instead, the local setup function
registers callback methods that are directly called
during simulation.

24 - 31 case 2,

 sys = mdlUpdate(t,x,u);

case 3,

 sys = mdlOutputs(t,x,u);

The setup function registers two local functions
associated with flag values of 2 and 3.
block.RegBlockMethod('Outputs' ,@Output);

block.RegBlockMethod('Update' ,@Update);

53 - 66 sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 1;

sizes.NumOutputs = 1;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = 0;

str = [];

ts = [.1 0];

The setup function also initializes the attributes of
the Level-2 MATLAB S-function:
block.NumInputPorts = 1;

block.NumOutputPorts = 1;

block.InputPort(1).Dimensions = 1;

block.InputPort(1).DirectFeedthrough = false;

block.OutputPort(1).Dimensions = 1;

block.NumDialogPrms = 0;

block.SampleTimes = [0.1 0];

Because this S-function has discrete
states, the setup method registers the
PostPropagationSetup callback method
to initialize a DWork vector and the
InitializeConditions callback method to set
the initial state value.
block.RegBlockMethod('PostPropagationSetup',...

 @DoPostPropSetup);

block.RegBlockMethod('InitializeConditions', ...

 @InitConditions);

56 sizes.NumDiscStates = 1; The PostPropagationSetup method initializes
the DWork vector that stores the single discrete
state.
function DoPostPropSetup(block)

 %% Setup Dwork

 block.NumDworks = 1;

 block.Dwork(1).Name = 'x0';

 block.Dwork(1).Dimensions = 1;

 block.Dwork(1).DatatypeID = 0;

 block.Dwork(1).Complexity = 'Real';

 block.Dwork(1).UsedAsDiscState = true;

3-17

3 Writing S-Functions in MATLAB

Line Number Code in sfundsc2.m Code in Level-2 MATLAB file (sfundsc2_level2.m)

64 x0 = 0; The InitializeConditions method initializes
the discrete state value.
function InitConditions(block)

%% Initialize Dwork

block.Dwork(1).Data = 0

77 - 78 function sys = ...

 mdlUpdate(t,x,u)

sys = u;

The Update method calculates the next value of
the discrete state.
function Update(block)

block.Dwork(1).Data = block.InputPort(1).Data;

88 - 89 function sys = ...

 mdlOutputs(t,x,u)

sys = x;

The Outputs method calculates the S-function's
output.
function Output(block)

block.OutputPort(1).Data = block.Dwork(1).Data;

3-18

4

Writing S-Functions in C

• “About C S-Functions” on page 4-2
• “Creating C MEX S-Functions” on page 4-4
• “Build S-Functions Automatically” on page 4-5
• “S-Function Builder Dialog Box” on page 4-11
• “Basic C MEX S-Function” on page 4-33
• “Templates for C S-Functions” on page 4-39
• “Integrate C Functions Using Legacy Code Tool” on page 4-43
• “Simulink Engine Interaction with C S-Functions” on page 4-67
• “Write Callback Methods” on page 4-79
• “S-Functions in Normal Mode Referenced Models” on page 4-80
• “Debug C MEX S-Functions” on page 4-82
• “Convert Level-1 C MEX S-Functions” on page 4-89

4 Writing S-Functions in C

About C S-Functions

A C MEX S-function must provide information about the function to the Simulink engine
during the simulation. As the simulation proceeds, the engine, the ODE solver, and the
C MEX S-function interact to perform specific tasks. These tasks include defining initial
conditions and block characteristics, and computing derivatives, discrete states, and
outputs.

As with MATLAB S-functions, the Simulink engine interacts with a C MEX S-function
by invoking callback methods that the S-function implements. Each method performs a
predefined task, such as computing block outputs, required to simulate the block whose
functionality the S-function defines. However, the S-function is free to perform the task
in each method according to the functionality the S-function implements. For example,
the mdlOutputs method must compute the block outputs at the current simulation time.
However, the S-function can calculate these outputs in any way that is appropriate for
the function. This callback-based API allows you to create S-functions, and hence custom
blocks, of any desired functionality.

The set of callback methods that C MEX S-functions can implement is larger than that
available for MATLAB S-functions. C MEX S-functions are required to implement only
a small subset of the callback methods in the S-function API. If your block does not
implement a particular feature, such as matrix signals, you are free to omit the callback
methods needed to implement a feature. This allows you to create simple blocks very
quickly.

The general format of a C MEX S-function is shown below:

#define S_FUNCTION_NAME your_sfunction_name_here

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

{

}

<additional S-function routines/code>

static void mdlTerminate(SimStruct *S)

{

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a

 MEX-file? */

4-2

 About C S-Functions

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration

 function */

#endif

mdlInitializeSizes is the first routine the Simulink engine calls when interacting
with the S-function. The engine subsequently invokes other S-function methods (all
starting with mdl). At the end of a simulation, the engine calls mdlTerminate.

4-3

4 Writing S-Functions in C

Creating C MEX S-Functions

You can create C MEX S-functions using any of the following approaches:

• Handwritten S-function — You can write a C MEX S-function from scratch. (“Basic C
MEX S-Function” on page 4-33 provides a step-by-step example.) See “Templates
for C S-Functions” on page 4-39 for a complete skeleton implementation of a
C MEX S-function that you can use as a starting point for creating your own S-
functions.

• S-Function Builder — This block builds a C MEX S-function from specifications and
code fragments that you supply using a graphical user interface. This eliminates the
need for you to write S-functions from scratch. See “Build S-Functions Automatically”
on page 4-5 for more information about the S-Function Builder.

• Legacy Code Tool — This utility builds a C MEX S-function from existing C code and
specifications that you supply using MATLAB code. See “Integrate C Functions Using
Legacy Code Tool” on page 4-43 for more information about integrating legacy C
code into Simulink models.

Each of these approaches involves a tradeoff between the ease of writing an S-function
and the features supported by the S-function. Although handwritten S-functions support
the widest range of features, they can be difficult to write. The S-Function Builder block
simplifies the task of writing C MEX S-functions but supports fewer features. The Legacy
Code Tool provides the easiest approach to creating C MEX S-functions from existing C
code but supports the fewest features. See “Available S-Function Implementations” on
page 2-2 for more information on the features and limitations of each of these approaches
to writing a C MEX S-function.

If you have Simulink Coder, in addition to the previous three approaches, the Simulink
Coder product provides a method for generating a C MEX S-function from a graphical
subsystem. If you are new to writing C MEX S-functions, you can build portions of
your application in a Simulink subsystem and use the S-function target to convert it
to an S-function. The generated files provides insight on how particular blocks can be
implemented within an S-function. For details and limitations on using the S-function
target, see “Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using
S-Function Target” (Simulink Coder).

4-4

 Build S-Functions Automatically

Build S-Functions Automatically

In this section...

“About Building S-Functions Automatically” on page 4-5
“Deploying the Generated S-Function” on page 4-9
“How the S-Function Builder Builds an S-Function” on page 4-9

About Building S-Functions Automatically

The S-Function Builder is a Simulink block that builds an S-function from specifications
and C code that you supply. The S-Function Builder also serves as a wrapper for the
generated S-function in models that use the S-function. This section explains how to use
the S-Function Builder to build simple C MEX S-functions.

Note For examples of using the S-Function Builder to build S-functions, see the C file S-
functions subsystem of the S-function examples provided with the Simulink product. To
display the examples, enter sfundemos at the MATLAB command line (see “S-Function
Examples” on page 1-26 for more information).

To build an S-function with the S-Function Builder:

1 Set the MATLAB current folder to the folder in which you want to create the S-
function.

Note This folder must be on the MATLAB path.
2 If you wish to connect a bus signal to the Input or Output port of the S-Function

Builder, you must first create a bus object. You perform this task interactively
using the Simulink Bus Editor (see “Create Bus Objects with the Bus Editor”.
Alternatively, you can use Simulink.Bus as follows.

a In the MATLAB Command Window, enter:

a = Simulink.Bus

As a result, the HeaderFile for the bus defaults to the empty character vector:

a =

4-5

4 Writing S-Functions in C

Simulink.Bus

 Description: ''

 HeaderFile: ''

 Elements: [0x1 double]

b If you wish to specify the header file for the bus, then at the MATLAB command
line:

a.Headerfile = 'Busdef.h'

If you do not specify a header file, Simulink automatically generates
Sfunctionname_bus.h

4-6

 Build S-Functions Automatically

For a demonstration on how to use the S-Function Builder with a bus, see the S-
Function Builder with buses example by entering the following command at
the MATLAB command line:

open_system(fullfile(matlabroot,'/toolbox/simulink/simdemos/simfeatures/',...

'sfbuilder_bususage'))

3 Create a new Simulink model.
4 Copy an instance of the S-Function Builder block from the User-Defined Functions

library in the Library Browser into the new model.

5 Double-click the block to open the S-Function Builder dialog box (see “S-Function
Builder Dialog Box” on page 4-11).

4-7

4 Writing S-Functions in C

6 Use the specification and code entry panes on the S-Function Builder dialog box to
enter information and custom source code required to tailor the generated S-function
to your application (see “S-Function Builder Dialog Box” on page 4-11).

7 Click Build on the S-Function Builder to start the build process.

The S-Function Builder builds a MEX file that implements the specified S-function
and saves the file in the current folder (see “How the S-Function Builder Builds an S-
Function” on page 4-9).

4-8

 Build S-Functions Automatically

8 Save the model containing the S-Function Builder block.

Deploying the Generated S-Function

To use the generated S-function in another model, first check to ensure that the folder
containing the generated S-function is on the MATLAB path. Then copy the S-Function
Builder block from the model used to create the S-function into the target model and set
its parameters, if necessary, to the values required by the target model.

Alternatively, you can deploy the generated S-function without using the S-Function
Builder block or exposing the underlying C source file. To do this:

1 Open the Simulink model that will include the S-function.
2 Copy an S-Function block from the User-Defined Functions library in the Library

Browser into the model.
3 Double-click on the S-Function block.
4 In the Block Parameters dialog box that opens, enter the name of the executable file

generated by the S-Function Builder into the S-function name edit field.
5 Enter any parameters needed by the S-function into the S-function parameters

edit field. Enter the parameters in the order they appear in the S-Function Builder
dialog box.

6 Click OK on the S-Function Block Parameters dialog box.

You can use the generated executable file, for example, the .mexw32 file, in any S-
Function block in any model as long as the executable file is on the MATLAB path.

How the S-Function Builder Builds an S-Function

The S-Function Builder builds an S-function as follows. First, it generates the following
source files in the current folder:

• sfun.c

where sfun is the name of the S-function that you specify in the S-function name
field of the S-Function Builder dialog box. This file contains the C source code
representation of the standard portions of the generated S-function.

• sfun_wrapper.c

4-9

4 Writing S-Functions in C

This file contains the custom code that you entered in the S-Function Builder dialog
box.

• sfun.tlc

This file permits the generated S-function to run in Simulink Rapid Accelerator mode
and allows for inlining the S-function during code generation. In addition, this file
generates code for the S-function in Accelerator mode, thus allowing the model to run
faster.

• sfun_bus.h

If you specify any Input port or Output port as a bus in the Data Properties
pane of the S-Function Builder dialog box, but do not specify a header file, then the S-
Function Builder automatically generates this header file.

After generating the S-function source code, the S-Function Builder uses the mex
command to build the MEX file representation of the S-function from the generated
source code and any external custom source code and libraries that you specified.

4-10

 S-Function Builder Dialog Box

S-Function Builder Dialog Box

In this section...

“About S-Function Builder” on page 4-11
“Parameters/S-Function Name Pane” on page 4-13
“Port/Parameter Pane” on page 4-14
“Initialization Pane” on page 4-14
“Data Properties Pane” on page 4-15
“Input Ports Pane” on page 4-16
“Output Ports Pane” on page 4-17
“Parameters Pane” on page 4-18
“Data Type Attributes Pane” on page 4-19
“Libraries Pane” on page 4-19
“Outputs Pane” on page 4-21
“Continuous Derivatives Pane” on page 4-24
“Discrete Update Pane” on page 4-25
“Build Info Pane” on page 4-26
“Example: Modeling a Two-Input/Two-Output System” on page 4-27

About S-Function Builder

The S-Function Builder dialog box enables you to specify the attributes of an S-function
to be built by an S-Function Builder block. To display the dialog box, double-click the
S-Function Builder block icon or select the block and then select Open Block from the
Edit menu on the model editor or the block's context menu.

4-11

4 Writing S-Functions in C

The dialog box contains controls that let you enter information needed for the S-Function
Builder block to build an S-function to your specifications. The controls are grouped into
panes. See the following sections for information on the panes and the controls that they
contain.

4-12

 S-Function Builder Dialog Box

Note The following sections use the term target S-function to refer to the S-function
specified by the S-Function Builder dialog box.

See “Example: Modeling a Two-Input/Two-Output System” on page 4-27 for an
example showing how to use the S-Function Builder to model a two-input/two-output
discrete state-space system.

Parameters/S-Function Name Pane

This pane displays the target S-function name and parameters and contains the
following controls.

S-function name

Specifies the name of the target S-function.

S-function parameters

This table displays the parameters of the target S-function. Each row of the table
corresponds to a parameter, and each column displays a property of the parameter as
follows:

• Name — Name of the parameter. Define and modify this property from the
“Parameters Pane” on page 4-18.

• Data type — Lists the data type of the parameter. Define and modify this property
from the “Parameters Pane” on page 4-18.

• Value — Specifies the value of the parameter. Enter a valid MATLAB expression in
this field.

Build/Save

Use this button to generate the C source code and executable MEX file from the
information you entered in the S-Function Builder. If the button is labeled Build, the
S-Function Builder generates the source code and executable MEX file. If the button is
labeled Save, it generates only the C source code. Use the Save code only check box on
the Build Info pane to toggle the functionality of this button.

Hide/Show S-function editing tabs

Use the small button at the bottom-right of the Parameters/S-Function Name pane, to
collapse and expand the bottom portion of the S-Function Builder dialog box.

4-13

4 Writing S-Functions in C

Port/Parameter Pane

This Port/Parameter pane on the left displays the ports and parameters that the dialog
box specifies for the target S-function.

The pane contains a tree control whose top nodes correspond to the target S-function
input ports, output ports, and parameters, respectively. Expanding the Input Ports,
Output Ports, or Parameter node displays the input ports, output ports, or parameters,
respectively, specified for the target S-function. Selecting any of the port or parameter
nodes selects the corresponding entry on the corresponding port or parameter
specification pane.

Initialization Pane

The Initialization pane allows you to specify basic features of the S-function, such as
the width of its input and output ports and its sample time.

The S-Function Builder uses the information that you enter on this pane to generate
the mdlInitializeSizes callback method. The Simulink engine invokes this method
during the model initialization phase of the simulation to obtain basic information about
the S-function. (See “Simulink Engine Interaction with C S-Functions” on page 4-67
for more information on the model initialization phase.)

The Initialization pane contains the following fields.

Number of discrete states

Number of discrete states in the S-function.

Discrete states IC

Initial conditions of the discrete states in the S-function. You can enter the values as a
comma-separated list or as a vector (e.g., [0 1 2]). The number of initial conditions
must equal the number of discrete states.

Number of continuous states

Number of continuous states in the S-function.

4-14

 S-Function Builder Dialog Box

Continuous states IC

Initial conditions of the continuous states in the S-function. You can enter the values as
a comma-separated list or as a vector (e.g., [0 1 2]). The number of initial conditions
must equal the number of continuous states.

Sample mode

Sample mode of the S-function. The sample mode determines the length of the interval
between the times when the S-function updates its output. You can select one of the
following options:

• Inherited

The S-function inherits its sample time from the block connected to its input port.
• Continuous

The block updates its outputs at each simulation step.
• Discrete

The S-function updates its outputs at the rate specified in the Sample time value
field of the S-Function Builder dialog box.

Sample time value

Scalar value indicating the interval between updates of the S-function outputs. This field
is enabled only if you select Discrete as the Sample mode.

Note: The S-Function Builder does not currently support multiple-block sample times or
a nonzero offset time.

Data Properties Pane

The Data Properties pane allows you to add ports and parameters to your S-function.
The column of buttons to the left of the panes allows you to add, delete, or reorder ports
or parameters, depending on the currently selected pane.

• To add a port or a parameter, click the Add button.
• To delete the currently selected port or parameter, click the Delete button.

4-15

4 Writing S-Functions in C

• To move the currently selected port or parameter up one position in the corresponding
S-Function port or parameter list, click the Up button.

• To move the currently selected port or parameter down one position in the
corresponding S-function port or parameter list, click the Down button.

This pane also contains tabbed panes that enable you to specify the attributes of the
ports and parameters that you create. See the following topics for more information.

• “Input Ports Pane” on page 4-16
• “Output Ports Pane” on page 4-17
• “Parameters Pane” on page 4-18
• “Data Type Attributes Pane” on page 4-19

Input Ports Pane

The Input Ports pane allows you to inspect and modify the properties of the S-function
input ports. The pane comprises an editable table that lists the properties of the input
ports in the order in which the ports appear on the S-Function Builder block. Each row of
the table corresponds to a port. Each entry in the row displays a property of the port as
follows.

Port name

Name of the port. Edit this field to change the port name.

Dimensions

Lists the number of dimensions of the input signal accepted by the port. To display a list
of supported dimensions, click the adjacent button. To change the port dimensionality,
select a new value from the list. Specify 1-D to size the signal dynamically, regardless of
the actual dimensionality of the signal.

Rows

Specifies the size of the first (or only) dimension of the input signal. Specify -1 to size the
signal dynamically.

Columns

Specifies the size of the second dimension of the input signal (only if the input port
accepts 2-D signals).

4-16

 S-Function Builder Dialog Box

Note: For input signals with two dimensions, if the rows dimension is dynamically
sized, the columns dimension must also be dynamically sized or set to 1. If the columns
dimension is set to some other value, the S-function will compile, but any simulation
containing this S-function will not run due to an invalid dimension specification.

Complexity

Specifies whether the input port accepts real or complex-valued signals.

Bus

If the input signal to the S-Function Builder block is a bus, then use the drop-down menu
in the Bus column to select 'on'.

Bus Name

Step 2 of the “Build S-Functions Automatically” on page 4-5 instructs you to create a bus
object, if your input signal is a bus. In the field provided in the Bus Name column, enter
the bus name that you defined while creating the inport bus object.

Output Ports Pane

The Output Ports pane allows you to inspect and modify the properties of the S-function
output ports. The pane consists of a table that lists the properties of the output ports
in the order in which the ports appear on the S-Function block. Each row of the table
corresponds to a port. Each entry in the row displays a property of the port as follows.

Port name

Name of the port. Edit this field to change the port name.

Dimensions

Lists the number of dimensions of signals output by the port. To display a list of
supported dimensions, click the adjacent button. To change the port dimensionality,
select a new value from the list. Specify 1-D to size the signal dynamically, regardless of
the actual dimensionality of the signal.

Rows

Specifies the size of the first (or only) dimension of the output signal. Specify -1 to size
the signal dynamically.

4-17

4 Writing S-Functions in C

Columns

Specifies the size of the second dimension of the output signal (only if the port outputs 2-
D signals).

Note: For output signals with two dimensions, if one of the dimensions is dynamically
sized the other dimension must also be dynamically sized or set to 1. If the second
dimension is set to some other value, the S-function will compile, but any simulation
containing this S-function will not run due to an invalid dimension specification. In some
cases, the calculations that determine the dimensions of dynamically sized output ports
may be insufficient and both dimensions of the 2-D output signal may need to be hard
coded.

Complexity

Specifies whether the port outputs real or complex-valued signals.

Bus

If the output signal to the S-Function Builder block is a bus, then use the drop-down
menu in the Bus column to select 'on'.

Bus Name

Step 2 of the “Build S-Functions Automatically” on page 4-5 instructs you to create a bus
object. In the field provided in the Bus Name column, enter the name that you defined
while creating the outport bus object.

Parameters Pane

The Parameters pane allows you to inspect and modify the properties of the S-function
parameters. The pane consists of a table that lists the properties of the S-function
parameters. Each row of the table corresponds to a parameter. The order in which the
parameters appear corresponds to the order in which the user must specify them in
the S-function parameters field. Each entry in the row displays a property of the
parameter as follows.

Parameter name

Name of the parameter. Edit this field to change the name.

4-18

 S-Function Builder Dialog Box

Data type

Lists the data type of the parameter. Click the adjacent button to display a list of
supported data types. To change the parameter data type, select a new type from the list.

Complexity

Specifies whether the parameter has real or complex values.

Data Type Attributes Pane

This pane allows you to specify the data type attributes of the input and output ports of
the target S-function. The pane contains a table listing the data type attributes of each
of the S-functions ports. You can edit only some of the fields in the table. The other fields
are grayed out. Each row corresponds to a port of the target S-function. Each column
specifies an attribute of the corresponding port.

Port

Name of the port. This field displays the name entered in the Input ports and Output
ports panes. You cannot edit this field.

Data Type

Data type of the port. Click the adjacent button to display a list of supported data types.
To change the data type, select a different data type from the list.

The remaining fields on this pane are enabled only if the Data Type field specifies a
fixed-point data type. See “Specify Fixed-Point Data Types” for more information.

Libraries Pane

The Libraries pane allows you to specify the location of external code files referenced
by custom code that you enter in other panes of the S-Function Builder dialog box. It
includes the following fields.

Library/Object/Source files

External library, object code, and source files referenced by custom code that you enter
elsewhere on the S-Function Builder dialog box. List each file on a separate line. If the
file resides in the current folder, you need specify only the file name. If the file resides in
another folder, you must specify the full path of the file.

4-19

4 Writing S-Functions in C

Alternatively, you can also use this field to specify search paths for libraries, object
files, header files, and source files. To do this, enter the tag LIB_PATH, INC_PATH, or
SRC_PATH, respectively, followed by the path name. You can make as many entries of
this kind as you need but each must reside on a separate line.

For example, consider an S-Function Builder project that resides at d:
\matlab6p5\work and needs to link against the following files:

• c:\customfolder\customfunctions.lib

• d:\matlab7\customobjs\userfunctions.obj

• d:\externalsource\freesource.c

The following entries enable the S-Function Builder to find these files:

SRC_PATH d:\externalsource

LIB_PATH $MATLABROOT\customobjs

LIB_PATH c:\customfolder

customfunctions.lib

userfunctions.obj

freesource.c

As this example illustrates, you can use LIB_PATH to specify both object and library file
paths. You can include the library name in the LIB_PATH declaration, however you must
place the object file name on a separate line. The tag $MATLABROOT indicates a path
relative to the MATLAB installation. You include multiple LIB_PATH entries on separate
lines. The paths are searched in the order specified.

You can also enter preprocessor (-D) directives in this field, for example,

-DDEBUG

Each directive must reside on a separate line.

Note: Do not put quotation marks around the library path, even if the path name has
spaces in it. If you add quotation marks, the compiler will not find the library.

Includes

Header files containing declarations of functions, variables, and macros referenced by
custom code that you enter elsewhere on the S-Function Builder dialog box. Specify each

4-20

 S-Function Builder Dialog Box

file on a separate line as #include statements. Use brackets to enclose the names of
standard C header files (e.g., #include <math.h>). Use quotation marks to enclose
names of custom header files (e.g., #include "myutils.h"). If your S-function uses
custom include files that do not reside in the current folder, you must use the INC_PATH
tag in the Library/Object/Source files field to set the include path for the S-Function
Builder to the directories containing the include files (see “Library/Object/Source files” on
page 4-19).

External function declarations

Declarations of external functions not declared in the header files listed in the Includes
field. Put each declaration on a separate line. The S-Function Builder includes the
specified declarations in the S-function source file that it generates. This allows S-
function code that computes the S-function states or outputs to invoke the external
functions.

Outputs Pane

Use the Outputs pane to enter code that computes the outputs of the S-function at each
simulation time step. This pane contains the following fields.

Code description

Code for the mdlOutputs function that computes the output of the S-function at each
time step (or sample time hit, in the case of a discrete S-function). When generating the
source code for the S-function, the S-Function Builder inserts the code in this field in a
wrapper function of the form

void sfun_Outputs_wrapper(const real_T *u,

 real_T *y,

 const real_T *xD, /* optional */

 const real_T *xC, /* optional */

 const real_T *param0, /* optional */

 int_T p_width0 /* optional */

 real_T *param1 /* optional */

 int_t p_width1 /* optional */

 int_T y_width, /* optional */

 int_T u_width) /* optional */

{

/* Your code inserted here */

}

4-21

4 Writing S-Functions in C

where sfun is the name of the S-function. The S-Function Builder inserts a call to this
wrapper function in the mdlOutputs callback method that it generates for your S-
function. The Simulink engine invokes the mdlOutputs method at each simulation time
step (or sample time step in the case of a discrete S-function) to compute the S-function
output. The mdlOutputs method in turn invokes the wrapper function containing your
output code. Your output code then actually computes and returns the S-function output.

The mdlOutputs method passes some or all of the following arguments to the outputs
wrapper function.

Argument Description

u0, u1, ... uN Pointers to arrays containing the inputs to the S-function,
where N is the number of input ports specified on the Input
ports pane found on the Data Properties pane. The names of
the arguments that appear in the outputs wrapper function are
the same as the names found on the Input ports pane. The
width of each array is the same as the input width specified for
each input on the Input ports pane. If you specified -1 as an
input width, the width of the array is specified by the wrapper
function's u_width argument (see below).

y0, y1, ... yN Pointer to arrays containing the outputs of the S-function,
where N is the number of output ports specified on the Output
ports pane found on the Data Properties pane. The names of
the arguments that appear in the outputs wrapper function are
the same as the names found on the Output ports pane. The
width of each array is the same as the output width specified
for each output on the Output ports pane. If you specified -1
as the output width, the width of the array is specified by the
wrapper function's y_width argument (see below). Use this
array to pass the outputs that your code computes back to the
Simulink engine.

xD Pointer to an array containing the discrete states of the S-
function. This argument appears only if you specified discrete
states on the Initialization pane. At the first simulation
time step, the discrete states have the initial values that you
specified on the Initialization pane. At subsequent sample-
time steps, the states are obtained from the values that the
S-function computes at the preceding time step (see “Discrete
Update Pane” on page 4-25 for more information).

4-22

 S-Function Builder Dialog Box

Argument Description

xC Pointer to an array containing the continuous states of the
S-function. This argument appears only if you specified
continuous states on the Initialization pane. At the first
simulation time step, the continuous states have the initial
values that you specified on the Initialization pane. At
subsequent time steps, the states are obtained by numerically
integrating the derivatives of the states at the preceding time
step (see “Continuous Derivatives Pane” on page 4-24 for
more information).

param0, p_width0,
param1, p_width1, ...
paramN, p_widthN

param0, param1, ...paramN are pointers to arrays containing
the S-function parameters, where N is the number of
parameters specified on the Parameters pane found on the
Data Properties pane. p_width0, p_width1, ...p_widthN
are the widths of the parameter arrays. If a parameter is a
matrix, the width equals the product of the dimensions of the
arrays. For example, the width of a 3-by-2 matrix parameter is
6. These arguments appear only if you specify parameters on
the Data Properties pane.

y_width Width of the array containing the S-function outputs. This
argument appears in the generated code only if you specified -1
as the width of the S-function output. If the output is a matrix,
y_width is the product of the dimensions of the matrix.

u_width Width of the array containing the S-function inputs. This
argument appears in the generated code only if you specified
-1 as the width of the S-function input. If the input is a matrix,
u_width is the product of the dimensions of the matrix.

These arguments permit you to compute the output of the block as a function of its inputs
and, optionally, its states and parameters. The code that you enter in this field can
invoke external functions declared in the header files or external declarations on the
Libraries pane. This allows you to use existing code to compute the outputs of the S-
function.

Inputs are needed in the output function

Select this check box if the current values of the S-function inputs are used to compute its
outputs. The Simulink engine uses this information to detect algebraic loops created by
directly or indirectly connecting the S-function output to the S-function input.

4-23

4 Writing S-Functions in C

Continuous Derivatives Pane

If the S-function has continuous states, use the Continuous Derivatives pane to enter
code required to compute the state derivatives. Enter code for the mdlDerivatives
function to compute the derivatives of the continuous states in the Code description
field on this pane. When generating code, the S-Function Builder takes the code in this
pane and inserts it in a wrapper function of the form:

void sfun_Derivatives_wrapper(const real_T *u,

 const real_T *y,

 real_T *dx,

 real_T *xC,

 const real_T *param0, /* optional */

 int_T p_width0, /* optional */

 real_T *param1,/* optional */

 int_T p_width1, /* optional */

 int_T y_width, /* optional */

 int_T u_width) /* optional */

{

 /* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call to
this wrapper function in the mdlDerivatives callback method that it generates for
the S-function. The Simulink engine calls the mdlDerivatives method at the end of
each time step to obtain the derivatives of the continuous states (see “Simulink Engine
Interaction with C S-Functions” on page 4-67). The Simulink solver numerically
integrates the derivatives to determine the continuous states at the next time step. At
the next time step, the engine passes the updated states back to the mdlOutputs method
(see “Outputs Pane” on page 4-21).

The mdlDerivatives callback method generated for the S-function passes the following
arguments to the derivatives wrapper function:

• u

• y

• dx

• xC

• param0, p_width0, param1, p_width1, ... paramN, p_widthN

4-24

 S-Function Builder Dialog Box

• y_width

• u_width

The dx argument is a pointer to an array whose width is the same as the number of
continuous derivatives specified on the Initialization pane. Your code should use
this array to return the values of the derivatives that it computes. See “Outputs Pane”
on page 4-21 for the meanings and usage of the other arguments. The arguments
allow your code to compute derivatives as a function of the S-function inputs, outputs,
and, optionally, parameters. Your code can invoke external functions declared on the
Libraries pane.

Discrete Update Pane

If the S-function has discrete states, use the Discrete Update pane to enter code that
computes at the current time step the values of the discrete states at the next time step.

Enter code for the mdlUpdate function to compute the values of the discrete states in
the Code description field on this pane. When generating code, the S-Function Builder
takes the code in this pane and inserts it in a wrapper function of the form

void sfun_Update_wrapper(const real_T *u,

 const real_T *y,

 real_T *xD,

 const real_T *param0, /* optional */

 int_T p_width0, /* optional */

 real_T *param1,/* optional */

 int_T p_width1, /* optional */

 int_T y_width, /* optional */

 int_T u_width) /* optional */

{

 /* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call to this
wrapper function in the mdlUpdate callback method that it generates for the S-function.
The Simulink engine calls the mdlUpdate method at the end of each time step to obtain
the values of the discrete states at the next time step (see “Simulink Engine Interaction
with C S-Functions” on page 4-67). At the next time step, the engine passes the
updated states back to the mdlOutputs method (see “Outputs Pane” on page 4-21).

4-25

4 Writing S-Functions in C

The mdlUpdates callback method generated for the S-function passes the following
arguments to the updates wrapper function:

• u

• y

• xD

• param0, p_width0, param1, p_width1, ... paramN, p_widthN
• y_width

• u_width

See “Outputs Pane” on page 4-21 for the meanings and usage of these arguments.
Your code should use the xD (discrete states) variable to return the values of the discrete
states that it computes. The arguments allow your code to compute the discrete states as
functions of the S-function inputs, outputs, and, optionally, parameters. Your code can
invoke external functions declared on the Libraries pane.

Build Info Pane

Use the Build Info pane to specify options for building the S-function MEX file. This
pane contains the following fields.

Compilation diagnostics

Displays information as the S-Function Builder is generating the C source and
executable files.

Show compile steps

Log each build step in the Compilation diagnostics field.

Create a debuggable MEX-File

Include debug information in the generated MEX file.

Enable support for coverage

Make S-Function compatible with model coverage. For more information, see “Coverage
for C and C++ S-Functions” (Simulink Verification and Validation) in Simulink
Verification and Validation™ documentation.

4-26

 S-Function Builder Dialog Box

Generate wrapper TLC

Selecting this option allows you to generate a TLC file. You need to generate a TLC file
if you are running your model in Rapid Accelerator mode or generating Simulink Coder
code from your model. Also, while it is not necessary for Accelerator mode simulations,
the TLC file will generate code for the S-function and thus makes your model run faster
in Accelerator mode.

Save code only

Do not build a MEX file from the generated source code.

Enable access to SimStruct

Makes the SimStruct (S) accessible to the wrapper functions that S-Function Builder
generates. This enables you to use the SimStruct macros and functions with your code
in the Outputs, Continuous Derivatives, and Discrete Updates panes. For example,
with this option enabled, you can use macros such as ssGetT in code that computes the
S-function outputs:

double t = ssGetT(S);

 if(t < 2) {

 y0[0] = u0[0];

 } else {

 y0[0]= 0.0;

 }

Additional methods

Click this button to include additional TLC methods in the TLC file for your S-function.
Check the methods you want to add and click the Close button to include the methods in
your TLC file. For more information, see “Block Target File Methods” (Simulink Coder).

Example: Modeling a Two-Input/Two-Output System

The example sfbuilder_example shows how to use the S-Function Builder to model
a two-input/two-output discrete state-space system with two states. In the example,
the state-space matrices are parameters to the S-function and the S-function input
and output are vectors. You can find a manually written version of the S-function in
dsfunc.c.

4-27

4 Writing S-Functions in C

Note You need to build the S-function before running the example model. To build the S-
function, double-click on the S-Function Builder block in the model and click Build on
the S-Function Builder dialog box that opens.

Initializing S-Function Settings

The Initialization pane specifies the number of discrete states and their initial
conditions, as well as sets the sample time of the S-function. This example contains two
discrete states, each initialized to 1, and a discrete sample mode with a sample time of 1.

Initializing Inputs, Outputs, and Parameters

The Data Properties pane specifies the dimensions of the S-function input and output,
as well as initializes the state-space matrices.

The Input ports pane defines the one S-function input port as a 1-D vector with two
rows.

4-28

 S-Function Builder Dialog Box

The Output ports pane similarly defines the one S-function output port as a 1-D vector
with two rows.

The Parameters pane defines four parameters, one for each of the four state-space
matrices.

4-29

4 Writing S-Functions in C

The S-function parameters pane at the top of the S-Function Builder contains the
actual values for the state-space matrices, entered as MATLAB expressions. In this
example, each state-space parameter is a two-by-two matrix. Alternatively, you can store
the state-space matrices in variables in the MATLAB workspace and enter the variable
names into the Value field for each parameter.

Defining the Output Method

The Outputs pane calculates the S-function output as a function of the input and
state vectors and the state-space matrices. In the outputs code, reference S-function

4-30

 S-Function Builder Dialog Box

parameters using the parameter names defined on the Data Properties — Parameters
pane. Index into 2-D matrices using a scalar index, keeping in mind that S-functions
use zero-based indexing. For example, to access the element C(2,1) in the S-function
parameter C, use C[1]in the S-function code.

The Outputs pane also selects the Inputs are needed in the output function (direct
feedthrough) option since this state-space model has a nonzero D matrix.

Defining the Discrete Update Method

The Discrete Update pane updates the discrete states. As with the outputs code,
use the S-function parameter names and index into 2-D matrices using a scalar index,
keeping in mind that S-functions use zero-based indexing. For example, to access the
element A(2,1) in the S-function parameter A, use A[1]in the S-function code. The
variable xD stores the final values of the discrete states.

4-31

4 Writing S-Functions in C

Building the State-Space Example

Click the Build button on the S-Function Builder to create an executable for this S-
function. You can now run the model and compare the output to the original discrete
state-space S-function contained in sfcndemo_dsfunc.

4-32

 Basic C MEX S-Function

Basic C MEX S-Function

In this section...

“Introducing an Example of a Basic C MEX S-Function” on page 4-33
“Defines and Includes” on page 4-35
“Callback Method Implementations” on page 4-36
“Simulink/Simulink Coder Interfaces” on page 4-38
“Building the Timestwo Example” on page 4-38

Introducing an Example of a Basic C MEX S-Function

This section presents an example of a C MEX S-function that you can use as a model for
creating simple C S-functions. The example S-function timestwo.c outputs twice its
input.

The following model uses the timestwo S-function to double the amplitude of a sine
wave and plot it in a scope.

The block dialog for the S-function specifies timestwo as the S-function name; the
parameters field is empty.

The timestwo S-function contains the S-function callback methods shown in this figure.
At the end of S-function, include the code snippet as described in “Simulink/Simulink
Coder Interfaces” on page 4-38.

4-33

4 Writing S-Functions in C

The contents of timestwo.c are shown below. A description of the code is provided after
the example.
#define S_FUNCTION_NAME timestwo /* Defines and Includes */

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;

 ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetNumSampleTimes(S, 1);

 /* Take care when specifying exception free code - see sfuntmpl.doc */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

 }

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

}

4-34

 Basic C MEX S-Function

static void mdlOutputs(SimStruct *S, int_T tid)

{

 int_T i;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 int_T width = ssGetOutputPortWidth(S,0);

 for (i=0; i<width; i++) {

 *y++ = 2.0 *(*uPtrs[i]);

 }

}

static void mdlTerminate(SimStruct *S){}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

This example has three parts:

• Defines and includes
• Callback method implementations
• Simulink (or Simulink Coder) product interfaces

Defines and Includes

The example starts with the following define statements.

#define S_FUNCTION_NAME timestwo

#define S_FUNCTION_LEVEL 2

The first define statement specifies the name of the S-function (timestwo). The
second define statement specifies that the S-function is in the Level 2 format (for more
information about Level 1 and Level 2 S-functions, see “Convert Level-1 C MEX S-
Functions” on page 4-89).

After defining these two items, the example includes simstruc.h, which is a header
file that gives access to the SimStruct data structure and the MATLAB Application
Program Interface (API) functions.

#define S_FUNCTION_NAME timestwo

#define S_FUNCTION_LEVEL 2

4-35

4 Writing S-Functions in C

#include "simstruc.h"

The simstruc.h file defines a data structure, called the SimStruct, that the Simulink
engine uses to maintain information about the S-function. The simstruc.h file also
defines macros that enable your MEX file to set values in and get values (such as
the input and output signal to the block) from the SimStruct (see “About SimStruct
Functions” on page 10-2).

Callback Method Implementations

The next part of the timestwo S-function contains implementations of required callback
methods.

mdlInitializeSizes

The Simulink engine calls mdlInitializeSizes to inquire about the number of input
and output ports, sizes of the ports, and any other information (such as the number of
states) needed by the S-function.

The timestwo implementation of mdlInitializeSizes specifies the following size
information:

• Zero parameters

Therefore, the S-function parameters field of the S-Function Block Parameters
dialog box must be empty. If it contains any parameters, the engine reports a
parameter mismatch.

• One input port and one output port

The widths of the input and output ports are dynamically sized. This tells the engine
that the S-function can accept an input signal of any width. By default, the widths of
dynamically sized input and output port are equal when the S-function has only one
input and output port.

• One sample time

The mdlInitializeSampleTimes callback method specifies the actual value of the
sample time.

• Exception free code

Specifying exception-free code speeds up execution of your S-function. You must take
care when specifying this option. In general, if your S-function is not interacting with

4-36

 Basic C MEX S-Function

the MATLAB environment, you can safely specify this option. For more details, see
“Simulink Engine Interaction with C S-Functions” on page 4-67.

mdlInitializeSampleTimes

The Simulink engine calls mdlInitializeSampleTimes to set the sample times of the
S-function. A timestwo block executes whenever the driving block executes. Therefore, it
has a single inherited sample time, INHERITED_SAMPLE_TIME.

mdlOutputs

The engine calls mdlOutputs at each time step to calculate the block outputs. The
timestwo implementation of mdlOutputs multiplies the input signal by 2 and writes
the answer to the output.

The line:

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

accesses the input signal. The ssGetInputPortRealSignalPtrs macro returns a
vector of pointers, which you must access using

*uPtrs[i]

For more details on accessing input signals, see “Accessing Signals Using Pointers” on
page 4-76.

The line:

real_T *y = ssGetOutputPortRealSignal(S,0);

accesses the output signal. The ssGetOutputPortRealSignal macro returns a pointer
to an array containing the block outputs.

The line:

int_T width = ssGetOutputPortWidth(S,0);

obtains the width of the signal passing through the block. The S-function loops over the
inputs to compute the outputs.

mdlTerminate

The engine calls mdlTerminate to provide the S-function with an opportunity to
perform tasks at the end of the simulation. This is a mandatory S-function routine.

4-37

4 Writing S-Functions in C

The timestwo S-function does not perform any termination actions, and this routine is
empty.

Simulink/Simulink Coder Interfaces

At the end of the S-function, include the following code to attach your S-function to either
the Simulink or Simulink Coder products.

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

This trailer is required at the end of every S-function. If it is omitted, any attempt to
compile your S-function will abort with a failure during build of exports file
error message.

Building the Timestwo Example

To compile this S-function, enter

mex timestwo.c

at the command line. The mex command compiles and links the timestwo.c file using
the default compiler. The mex command creates a dynamically loadable executable for
the Simulink software to use. If you have multiple MATLAB-supported compilers, you
can change the default using the mex -setup command. See “Change Default Compiler”
(MATLAB) and the list of .

The resulting executable is referred to as a MEX S-function, where MEX stands for
“MATLAB Executable.” The MEX file extension varies from platform to platform. For
example, on a 32–bit Microsoft® Windows system, the MEX file extension is .mexw32.

4-38

 Templates for C S-Functions

Templates for C S-Functions

In this section...

“About the Templates for C S-Functions” on page 4-39
“S-Function Source File Requirements” on page 4-39
“The SimStruct” on page 4-41
“Data Types in S-Functions” on page 4-42
“Compiling C S-Functions” on page 4-42

About the Templates for C S-Functions

Use one of the provided C MEX S-function templates as a starting point for creating your
own S-function. The templates contain skeleton implementations of callback methods
with comments that explain their use. The template file, sfuntmpl_basic.c, contains
commonly used S-function routines. A template containing all available routines (as well
as more comments) can be found in sfuntmpl_doc.c in the same folder.

Note We recommend that you use the C MEX file template when developing MEX S-
functions.

S-Function Source File Requirements

This section describes requirements that every S-function source file must meet to
compile correctly. The S-function templates meet these requirements.

Statements Required at the Top of S-Functions

For S-functions to operate properly, each source module of your S-function that accesses
the SimStruct must contain the following sequence of defines and include
#define S_FUNCTION_NAME your_sfunction_name_here

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

where your_sfunction_name_here is the name of your S-function (i.e., what you
enter in the S-Function Block Parameters dialog box). These statements give you
access to the SimStruct data structure that contains pointers to the data used by the
simulation. The included code also defines the macros used to store and retrieve data

4-39

4 Writing S-Functions in C

in the SimStruct, described in detail in “Convert Level-1 C MEX S-Functions” on page
4-89. In addition, the code specifies that you are using the Level-2 S-function format.

Note All S-functions from Simulink version 1.3 through version 2.1 are considered to be
Level-1 S-functions. They are compatible with newer versions of the software, but we
recommend that you write new S-functions in the Level-2 format.

The following headers are included by simstruc.h when compiling as a MEX file.

Header Files Included by simstruc.h When Compiling as a MEX File

Header File Description

matlabroot/extern/include/tmwtypes.h General data types, e.g., real_T
matlabroot/simulink/include/

simstruc_types.h

SimStruct data types, e.g., DTypeId

matlabroot/extern/include/mex.h MATLAB MEX file API routines to
interface MEX files with the MATLAB
environment

matlabroot/extern/include/matrix.h MATLAB External Interface API
routines to query and manipulate
MATLAB matrices

When compiling your S-function for use with the Simulink Coder product, simstruc.h
includes the following.

Header Files Included by simstruc.h When Used by the Simulink Coder Product

Header File Description

matlabroot/extern/include/tmwtypes.h General types, e.g., real_T
matlabroot/simulink/include/

simstruc_types.h

SimStruct data types, e.g., DTypeId

matlabroot/rtw/c/src/rt_matrx.h Macros for MATLAB API routines

Callback Methods That an S-Function Must Implement

Your S-function must implement the following functions (see “Write Callback Methods”
on page 4-79):

4-40

 Templates for C S-Functions

• mdlInitializeSizes specifies the sizes of various parameters in the SimStruct,
such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.
• mdlOutputs calculates the output of the block.
• mdlTerminate performs any actions required at the termination of the simulation. If

no actions are required, this function can be implemented as a stub.

Statements Required at the Bottom of S-Functions

Your S-function must include the following trailer code at the end of the main module
only.
#ifdef MATLAB_MEX_FILE /* Is this being compiled as MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration func */

#endif

These statements select the appropriate code for your particular application:

• simulink.c is included if the file is being compiled into a MEX- file.
• cg_sfun.h is included if the file is being used with the Simulink Coder product to

produce a standalone or real-time executable.

Note This trailer code must not be in the body of any S-function routine.

The SimStruct

The file simstruc.h is a C language header file that defines the SimStruct data
structure and its access macros. It encapsulates all the data relating to the model or S-
function, including block parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each S-
function in the model has its own SimStruct associated with it. The organization
of these SimStructs is much like a folder tree. The SimStruct associated with the
model is the root SimStruct. Any SimStruct associated with an S-function is a child
SimStruct.

The Simulink product provides a set of macros that S-functions can use to access the
fields of the SimStruct. See “About SimStruct Functions” on page 10-2 for more
information.

4-41

4 Writing S-Functions in C

Data Types in S-Functions

The file tmwtypes.h is a C language header file that defines a set of data types used
in the S-function template and in the SimStruct. These data types, such as real_T,
uint32_T, etc., provide a way to switch between different data types for 16, 32, and 64
bit systems, allowing greater platform independence and flexibility.

S-functions are not required to use these data types. For example, you can edit the
example csfunc.c and change real_T to double and int_T to int. If you compile and
simulate the S-function, the results will be identical to the results using the previous
data types.

Compiling C S-Functions

Your S-function can be compiled in one of three modes, defined either by the mex
command or by the Simulink Coder product when the S-function is built:

• MATLAB_MEX_FILE — Indicates that the S-function is being built as a MEX file for
use with the Simulink product.

• RT — Indicates that the S-function is being built with the Simulink Coder product for
a real-time application using a fixed-step solver.

• NRT — Indicates that the S-function is being built with the Simulink Coder product
for a non-real-time application using a variable-step solver.

The build process you use automatically defines the mode for your S-function.

4-42

 Integrate C Functions Using Legacy Code Tool

Integrate C Functions Using Legacy Code Tool

In this section...

“Overview” on page 4-43
“Integrate C Functions into Simulink Models with Legacy Code Tool” on page 4-46
“Integrate C Function Whose Arguments Are Pointers to Structures” on page 4-49
“Registering Legacy Code Tool Data Structures” on page 4-53
“Declaring Legacy Code Tool Function Specifications” on page 4-55
“Generating and Compiling the S-Functions” on page 4-62
“Generating a Masked S-Function Block for Calling a Generated S-Function” on page
4-63
“Forcing Simulink Accelerator Mode to Use S-Function TLC Inlining Code” on page
4-63
“Calling Legacy C++ Functions” on page 4-64
“Handling Multiple Registration Files” on page 4-64
“Deploying Generated S-Functions” on page 4-65
“Legacy Code Tool Examples” on page 4-65
“Legacy Code Tool Limitations” on page 4-65

Overview

You can integrate existing C (or C++) functions, such as device drivers, lookup tables,
and general functions and interfaces, into Simulink models by using the Legacy Code
Tool. Using specifications that you supply as MATLAB code, the tool transforms existing
functions into C MEX S-functions that you can include in Simulink models. If you use
Simulink Coder to generate code, Legacy Code Tool can insert an appropriate call to your
C function into the generated code. For details, see “Import Calls to External Code into
Generated Code with Legacy Code Tool” (Simulink Coder).

In comparison to using the S-Function Builder or writing an S-function, Legacy Code
Tool is easier to use and generates optimized code (does not generate wrapper code) often
required by embedded systems. However, consider alternative approaches for a hybrid
system, such as a system that includes a plant and controller, or a system component
written in a language other than C or C++. Alternative approaches are more flexible in
that they support more features and programming languages.

4-43

4 Writing S-Functions in C

To interact with the Legacy Code Tool, you

• Use a Legacy Code Tool data structure to specify

• A name for the S-function
• Specifications for the existing C functions
• Files and paths required for compilation
• Options for the generated S-function

• Use the legacy_code function to

• Initialize the Legacy Code Tool data structure for a given C function
• Generate an S-function for use during simulation
• Compile and link the generated S-function into a dynamically loadable executable
• Generate a masked S-function block for calling the generated S-function
• Generate a TLC block file and, if necessary, an sFunction_makecfg.m or

rtwmakecfg.m file for code generation (Simulink Coder product license required)

Note: Before you can use legacy_code, ensure that a C compiler is set up for your
MATLAB installation.

The following diagram illustrates a general procedure for using the Legacy Code Tool.
“Integrate C Functions into Simulink Models with Legacy Code Tool” on page 4-46
provides an example that uses the Legacy Code Tool to transform an existing C function
into a C MEX S-function.

4-44

 Integrate C Functions Using Legacy Code Tool

If you have a Simulink Coder product license, see “Import Calls to External Code into
Generated Code with Legacy Code Tool” (Simulink Coder) for information on using the
Legacy Code Tool for code generation.

4-45

4 Writing S-Functions in C

Integrate C Functions into Simulink Models with Legacy Code Tool

This example demonstrates how to integrate an existing C function into a Simulink
model using Legacy Code Tool.

Suppose that you have a C function that outputs the value of its floating-point input
multiplied by two. The function is defined in a source file named doubleIt.c, and its
declaration exists in a header file named doubleIt.h.

#include �doubleIt.h�

double doubleIt(double inVal)
{
 return(2 * inVal);
}

doubleIt.c

#ifndef _DOUBLEIT_H_
#define _DOUBLEIT_H_

double doubleIt(double inVal);

#endif

doubleIt.h

1 Initialize a MATLAB struct def with fields that represent Legacy Code Tool
properties using the legacy_code function.

def = legacy_code('initialize')

The Legacy Code Tool data structure named def displays its fields in the MATLAB
command window as shown here:

def =

 SFunctionName: ''

InitializeConditionsFcnSpec: ''

 OutputFcnSpec: ''

 StartFcnSpec: ''

 TerminateFcnSpec: ''

 HeaderFiles: {}

 SourceFiles: {}

 HostLibFiles: {}

 TargetLibFiles: {}

 IncPaths: {}

 SrcPaths: {}

 LibPaths: {}

 SampleTime: 'inherited'

4-46

 Integrate C Functions Using Legacy Code Tool

 Options: [1x1 struct]

2 Specify appropriate values for fields in the Legacy Code Tool data structure to
identify properties of the existing C function. For example, specify the C function
source and header filenames by entering the following commands at the MATLAB
command prompt:

def.SourceFiles = {'doubleIt.c'};

def.HeaderFiles = {'doubleIt.h'};

You must also specify information about the S-function that the Legacy Code Tool
produces from the C code. For example, specify a name for the S-function and its
output function declaration by entering:

def.SFunctionName = 'ex_sfun_doubleit';

def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

For information about the various data structure fields, see the legacy_code
reference page.

3 Generate an S-function source file from the existing C function by using the
legacy_code function. At the MATLAB command prompt, type:

legacy_code('sfcn_cmex_generate', def);

The Legacy Code Tool uses the information specified in def to create the S-function
source file named ex_sfun_doubleit.c in the current MATLAB folder.

4 Compile and link the S-function source file into a dynamically loadable executable
for Simulink using thelegacy_code function. At the MATLAB command prompt,
type:

legacy_code('compile', def);

The following messages appear in the MATLAB command window:

Start Compiling ex_sfun_doubleit

 mex('ex_sfun_doubleit.c', 'd:\work\lct_demos\doubleIt.c',

 '-Id:\work\lct\lct_demos')

Finish Compiling ex_sfun_doubleit

Exit

On a 32-bit Microsoft Windows system, the resulting S-function executable is named
ex_sfun_doubleit.mexw32.

5 Insert a masked S-Function block into a Simulink model.

4-47

4 Writing S-Functions in C

legacy_code('slblock_generate', def);

The Legacy Code Tool configures the block to use the C MEX S-function created in
the previous step. Also, the tool masks the block such that it displays the value of its
OutputFcnSpec property (see the description of the legacy_code function).

6 Add a Sine Wave block of amplitude 1 to the input of the C-MEX S-function block
and a Scope block to the output.

Run the simulation. The C-MEX S-Function block returns the value of its floating-
point input multiplied by two. It behaves like the C function doubleIt.

4-48

 Integrate C Functions Using Legacy Code Tool

Integrate C Function Whose Arguments Are Pointers to Structures

This example shows how to use the Legacy Code Tool to integrate a handwritten C
function whose arguments are pointers to structures.

In Simulink®, create a Simulink.Bus object to represent a structure type. Use bus
signals in a model to represent structured signals and states. Create MATLAB structures
in a workspace or in a block parameter dialog box to represent parameter structures.

For basic information about bus signals, see “Buses”. For basic information about
parameter structures, see “Organize Related Block Parameter Definitions in Structures”.
To create bus objects, see “Create Bus Objects with the Bus Editor”.

4-49

4 Writing S-Functions in C

Explore Legacy Code

Copy this custom source code into a file named mySrc.c in your current folder.

#include "myTypes.h"

void myFcn(sigStructType *in, paramStructType *params, sigStructType *out)

{

 out->sig1 = in->sig1 * params->param1;

 out->sig2 = in->sig2 * params->param2 + params->param3;

}

The arguments of the function myFcn are pointers to structures. The function accepts an
input signal argument, a parameter argument, and an output signal argument.

Copy this custom header code into a file named myTypes.h in your current folder.

#ifndef _MY_TYPES_H_

#define _MY_TYPES_H_

typedef struct {

 double sig1;

 double sig2;

} sigStructType;

typedef struct {

 double param1;

 double param2;

 double param3;

} paramStructType;

#endif

The file defines the signal and parameter structure types that myFcn uses.

Create Bus Objects to Represent Structure Types in Simulink

At the command prompt, use the function Simulink.importExternalCTypes to
generate bus objects in the base workspace.

Simulink.importExternalCTypes('myTypes.h');

The bus objects correspond to the struct types that myTypes.h defines.

4-50

 Integrate C Functions Using Legacy Code Tool

Create Block to Execute Legacy Code

Create a structure variable, def, to store the specifications for an S-function that calls
the legacy code. Use the function legacy_code to create the structure and set default
values.

def = legacy_code('initialize');

Set the name of the S-function to sfun_mySrc.

def.SFunctionName = 'sfun_mySrc';

Identify the legacy source and header files by their file names.

def.SourceFiles = {'mySrc.c'};

def.HeaderFiles = {'myTypes.h'};

Specify the prototype of the output function, which the model calls every simulation step,
by copying the prototype of the legacy function myFcn. Set the names of the arguments to
u1, p1, and y1 to represent the input argument, the parameter argument, and the output
argument. Use the syntax [1] to specify that each argument is a pointer.

def.OutputFcnSpec = ['void myFcn(sigStructType u1[1], ',...

 'paramStructType p1[1], sigStructType y1[1])'];

Use the function legacy_code to create the S-function and the corresponding C MEX
executable from the specification, def. Specify the option 'generate_for_sim' to
prepare the S-function for normal and accelerated simulations.

legacy_code('generate_for_sim',def);

Start Compiling sfun_mySrc

 mex('-I\\fs-57-ah\vmgr$\home07\gsalvete\Documents\MATLAB\examples\simulink-ex12763634', '-c', '-outdir', 'C:\Users\gsalvete\AppData\Local\Temp\tpe2fcf457_e210_4275_a775_3221dcd6a5c6', '\\fs-57-ah\vmgr$\home07\gsalvete\Documents\MATLAB\examples\simulink-ex12763634\mySrc.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('sfun_mySrc.c', '-I\\fs-57-ah\vmgr$\home07\gsalvete\Documents\MATLAB\examples\simulink-ex12763634', 'C:\Users\gsalvete\AppData\Local\Temp\tpe2fcf457_e210_4275_a775_3221dcd6a5c6\mySrc.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling sfun_mySrc

Exit

Create a masked S-Function block that calls the S-function during simulation.

4-51

4 Writing S-Functions in C

legacy_code('slblock_generate', def);

The block appears in a new model.

To use the S-Function block in your model, create a bus signal of type sigStructType
to use as the block input. The block output is also a bus signal. The block mask accepts a
parameter, P1. To set the value of the parameter, use a MATLAB structure whose fields
match those of the structure type paramStructType.

Verify Execution of Legacy Code

Create a harness model that verifies the execution of the legacy code during simulation.

For an example, view the model ex_lct_struct.

open_system(fullfile(matlabroot,'examples','simulink','ex_lct_struct'))

In the Constant block dialog box, the Constant value parameter is set to a structure
whose fields match those of the structure type sigStructType. On the Signal
Attributes tab, Output data type is set to the bus object sigStructType.

The S-Function block calls the S-function sfun_mySrc that you created. The output of
the block enters a Bus Selector block, which extracts the signal elements sig1 and sig2.

4-52

 Integrate C Functions Using Legacy Code Tool

The S-Function block accepts a parameter through the mask dialog box. Create a
MATLAB structure structParam to use as the value of the parameter.

structParam = struct;

structParam.param1 = 15;

structParam.param2 = 20;

structParam.param3 = 5;

Optionally, use a Simulink.Parameter object to contain the structure. If you use a
parameter object, you can set the data type of the structure by using the bus object
paramStructType.

structParam = Simulink.Parameter(structParam);

structParam.DataType = 'Bus: paramStructType';

In the mask dialog box, set P1 to structParam.

set_param('ex_lct_struct/sfun_mySrc','SParameter1','structParam')

Simulate the model. The Scope blocks show that the S-Function block calls the legacy
function myFcn.

sim('ex_lct_struct')

Registering Legacy Code Tool Data Structures

The first step to using the Legacy Code Tool is to register one or more MATLAB
structures with fields that represent properties of the existing C code and the S-function
being generated. The registration process is flexible. You can choose to set up resources
and initiate registration in a variety of ways, including

• Placing all required header and source files in the current working folder or in a
hierarchical folder structure

• Generating and placing one or more S-functions in the current working folder
• Having one or more registration files in the same folder

To register a Legacy Code Tool data structure:

1 Use the legacy_code function, specifying 'initialize' as the first argument.

lct_spec = legacy_code('initialize')

4-53

4 Writing S-Functions in C

The Legacy Code Tool data structure named lct_spec displays its fields in the
MATLAB command window as shown below:

lct_spec =

 SFunctionName: ''

InitializeConditionsFcnSpec: ''

 OutputFcnSpec: ''

 StartFcnSpec: ''

 TerminateFcnSpec: ''

 HeaderFiles: {}

 SourceFiles: {}

 HostLibFiles: {}

 TargetLibFiles: {}

 IncPaths: {}

 SrcPaths: {}

 LibPaths: {}

 SampleTime: 'inherited'

 Options: [1x1 struct]

2 Define values for the data structure fields (properties) that apply to your existing C
function and the S-function you intend to generate. Minimally, you must specify

• Source and header files for the existing C function (SourceFiles and
HeaderFiles)

• A name for the S-function (SFunctionName)
• At least one function specification for the S-function

(InitializeConditionsFcnSpec, OutputFcnSpec, StartFcnSpec,
TerminateFcnSpec)

For a complete list and descriptions of the fields in the structure, see the
legacy_code function reference page.

If you define fields that specify compilation resources and you specify relative paths, the
Legacy Code Tool searches for the resources relative to the following directories, in the
following order:

1 Current working folder
2 C-MEX S-function folder, if different than the current working folder
3 Directories you specify

• IncPaths for header files

4-54

 Integrate C Functions Using Legacy Code Tool

• SrcPaths for source files
• LibPaths for target and host libraries

4 Directories on the MATLAB search path, excluding toolbox directories

Declaring Legacy Code Tool Function Specifications

The InitializeConditionsFcnSpec, OutputFcnSpec, StartFcnSpec, and
TerminateFcnSpec fields defined in the Legacy Code Tool data structure (see the
description of the legacy_code function) require character vector values that adhere
to a specific syntax format. The required syntax format enables the Legacy Code Tool
to map the return value and arguments of an existing C function to the return value,
inputs, outputs, parameters, and work vectors of the S-function that the tool generates.

General syntax

return-spec = function-name(argument-spec)

For example, the following character vector specifies a function named doubleIt with
return specification double y1 and input argument specification double u1.

def.OutputFcnSpec = 'double y1 = doubleIt(double u1)';

For more detail on declaring function specifications, see

• “Return Specification” on page 4-55
• “Function Name” on page 4-56
• “Argument Specification” on page 4-56
• “Supported Data Types” on page 4-59
• “Legacy Code Tool Function Specification Rules” on page 4-61
• “Legacy C Function Rules” on page 4-61

Return Specification

The return specification defines the data type and variable name for the return value of
the existing C function.

return-type return-variable

return-type A data type listed in “Supported Data Types” on page 4-59.

4-55

4 Writing S-Functions in C

return-variable Token of the form y1, y2, ..., yn, where n is the total number
of output arguments.

If the function does not return a value, you can omit the return specification or specify it
as void.

The following table shows valid function specification syntax for an integer return value.
Use the table to identify the syntax you should use for your C function prototype.

Return Type C Function Prototype Legacy Code Tool Function
Specification

No return value void myfunction(...) void myfunction(...)

Scalar value int = myfunction(...) int16 y1 =

myfunction(...)

Function Name

The function name that you specify must be the same as your existing C function name.

For example, consider the following C function prototype:

float doubleIt(float inVal);

In this case, the function name in the Legacy Code Tool function specification must be
doubleIt.

You should not specify the name of a C macro. If you must, set the field
Options.isMacro to true in case expression folding is enabled.

Argument Specification

The argument specification defines one or more data type and token pairs that represent
the input, output, parameter, and work vector arguments of the existing C function.
The function input and output arguments map to block input and output ports and
parameters map to workspace parameters.

argument-type argument-token

argument-type A data type listed in “Supported Data Types” on page 4-59.

4-56

 Integrate C Functions Using Legacy Code Tool

argument-token Token of one of the following forms:

• Input — u1, u2, ..., un, where n is the total number of input
arguments

• Output — y1, y2, ..., yn, where n is the total number of
output arguments

• Parameter — p1, p2, ..., pn, where n is the total number of
parameter arguments

• Work vectors (persistent memory) — work1, work2, ...,
workn, where n is the total number of work vector arguments

If the function has no arguments, you can omit the argument specification or specify it as
void.

Consider the following C function prototype:

float powerIt(float inVal, int exponent);

To generate an S-function that calls the preceding function at each time step, set the
Legacy Code Tool data structure field OutputFcnSpec to the following:

'single y1 = powerIt(single u1, int16 p1)'

Using this function specification, the Legacy Code Tool maps the following information.

Return Value or
Argument

of C Type To Token of Data Type

Return value float y1 single

inVal float u1 single

exponent int p1 int16

If your function requires a Simulink S-function block with multiple input and output
ports, map function arguments to input ports using a uniquely numbered u token.
For output ports, use a uniquely numbered y token. These tokens are described in the
preceding argument specification table. For example, consider the following C function
prototype:

void myfunc(double *y2, double u2, double u3, double u1, double *y1);

An OutputFcnSpec character vector mapping the arguments to input and output ports
looks similar to the following:

4-57

4 Writing S-Functions in C

'void myfunc(double y2[1], double u2, double u3, double u1, double y1[1])'

The resulting S-function block includes three input ports and two output ports. The
first input maps to function argument u1, the second input to u2, and the third input
to u3. For the output ports, the function argument y1[1] maps to the first output, and
argument y2[1] maps to the second output. For another example of mapping a function
prototype to multiple input and output ports, see “Using Buses with Legacy Functions
Having Structure Arguments”.

The following table shows valid function specification syntax for arguments of type
integer. Use the table to identify and then adapt the syntax you should use for your C
function prototype.

Argument Type C Function Prototype Legacy Code Tool Function
Specification

Input Arguments
No arguments function(void) function(void)

Scalar pass by value function(int in1) function(int16 u1)

Scalar pass by pointer function(int *in1) function(int16 u1[1])

Fixed vector function(int in1[10]) or
function(int *in1)

function(int16 u1[10])

Variable vector function(int in1[]) or
function(int *in1)

function(int16 u1[])

Fixed matrix function(int in1[15]) or
function(int in1[]) or
function(int *in1)

function(int16 u1[3][5])

Variable matrix function(int in1[]) or
function(int *in1)

function(int16 u1[][])

Output Arguments
Scalar pointer function(int *y1) function(int16 y1[1])

Fixed vector function(int y1[10]) or
function(int *y1)

function(int16 y1[10])

Fixed matrix function(int y1[15]) or
function(int y1[]) or
function(int *y1)

function(int16 y1[3][5])

Parameter Arguments

4-58

 Integrate C Functions Using Legacy Code Tool

Argument Type C Function Prototype Legacy Code Tool Function
Specification

Scalar pass by value function(int p1) function(int16 p1)

Scalar pass by pointer function(int *p1) function(int16 p1[1])

Fixed vector function(int p1[10]) or
function(int *p1)

function(int16 p1[10])

Variable vector function(int p1[]) or
function(int *p1)

function(int16 p1[])

Fixed matrix function(int p1[15]) or
function(int p1[]) or
function(int *p1)

function(int16 p1[3][5])

Variable matrix function(int p1[]) or
function(int *p1)

function(int16 p1[][])

Work Vector Arguments
Scalar passed by value function(int work1) function(int16 work1)

Scalar pointer function(int *work1)

function(void *work1)

function(void **work1)

function(int16 work1[1])

void function(void

*work1)

void function(void

**work1)

Fixed vector function(int work1[10]) or
function(int *work1)

function(int16 work1[10])

Fixed matrix function(int work1[15]) or
function(int work1[]) or
function(int *work1)

function(int16 work1[3]

[5])

Supported Data Types

Data Type Supported for Input
and Output?

Supported for
Parameters?

Supported for
Work Vectors?

“Data Types Supported by
Simulink”

Yes Yes Yes

Simulink.Bus1 Yes Yes Yes

Array of Simulink.Bus2 Yes No Yes

4-59

4 Writing S-Functions in C

Data Type Supported for Input
and Output?

Supported for
Parameters?

Supported for
Work Vectors?

Simulink.NumericType3 Yes Yes Yes

Simulink.AliasType1 Yes Yes Yes

enum1 Yes Yes Yes

Fixed-point4 Yes Yes Yes

Fi objects N/A Yes N/A

Complex numbers5 Yes Yes Yes

1-D array Yes Yes Yes

2-D array6 Yes Yes Yes

n-D array7 Yes Yes Yes

void * No No Yes
void ** No No Yes

1 You must supply the header file that defines the structure of the bus, defines the
enum type, or defines the data type with the same name as an alias. The structure
of the bus declared in the header file must match the structure of the bus object (for
example, the number and order of elements, data types and widths of elements, and
so on). For an example, see sldemo_lct_bus.

To generate data type objects and enumeration classes that correspond to custom
data types that your C code defines, use the Simulink.importExternalCTypes
function.

2 A bus element can be complex, but only with Simulink built-in data types. Nesting of
arrays to any level is also supported.

3 You must supply the header file that defines the data type only if the numeric data
type is also an alias.

4 You must declare the data as a Simulink.NumericType object (unspecified
scaling is not supported). For examples, see sldemo_lct_fixpt_signals and
sldemo_lct_fixpt_params.

5 Limited to use with Simulink built-in data types. To specify a complex data
type, enclose the built-in data type within angle brackets (<>) and prepend
the word complex (for example, complex<double>). For an example, see
sldemo_lct_cplxgain.

4-60

 Integrate C Functions Using Legacy Code Tool

6 The MATLAB, Simulink, and Simulink Coder products store two-dimensional matrix
data in column-major format as a vector. If your external function code is written for
row-major data, transpose the matrix data in the MATLAB environment.

7 For a multidimensional signal, you can use the size function to determine
the number of elements in the signal. For examples, see sldemo_lct_lut and
sldemo_lct_ndarray.

For more information, see “Data Types Supported by Simulink”.

Legacy Code Tool Function Specification Rules

Specifications for the legacy_code must adhere to the following rules:

• If an argument is not scalar, you must pass the argument by reference.
• The numbering of input, output, parameter, and work vector argument tokens must

start at 1 and increase monotonically.
• For a given Legacy Code Tool data structure, the data type and size of input,

output, parameter, and work vector arguments must be the same across
function specifications for StartFcnSpec, InitializeConditionsFcnSpec,
OutputFcnSpec, and TerminateFcnSpec.

• You can specify argument dimensions with expressions that use the following:

• Functions: numel , size
• Parameter values
• Operators: +, -, *, and /
• Integer and floating point literals
• Parentheses for grouping sub-expressions

For example:

def.OutputFcnSpec=

foo4(int8 p1[], int8 u1[], double y1[numel(u1)+2][numel(u1)+3], ...

int32 (numel(p1)+numel(u1))*2+size(y1,2))';

Legacy C Function Rules

To integrate a C function using the Legacy Code Tool, the function must adhere to the
following rules:

• The function must not change the value of input arguments.

4-61

4 Writing S-Functions in C

• The function's return value cannot be a pointer.
• Function specifications you define for the StartFcnSpec,

InitializeConditionsFcnSpec, or TerminateFcnSpec cannot access input or
output arguments. For StartFcnSpec and InitializeConditionsFcnSpec, you
can access output ports if the S-Function option outputsConditionallyWritten
is set to true. With this option setting, the generated S-Function specifies that
the memory associated with each output port cannot be overwritten and is global
(SS_NOT_REUSABLE_AND_GLOBAL).

Generating and Compiling the S-Functions

After you register a Legacy Code Tool data structure for an existing C function, use the
legacy_code function as explained below to generate, compile, and link the S-function.

1 Generate a C MEX S-function based on the information defined in the structure. Call
legacy_code with 'sfcn_cmex_generate' as the first argument and the name of
the data structure as the second argument.

legacy_code('sfcn_cmex_generate', lct_spec);

2 Compile and link the S-function. This step assumes that a C compiler is set up
for your MATLAB installation. Call legacy_code with 'compile' as the first
argument and the name of the data structure as the second argument.

legacy_code('compile', lct_spec);

Informational messages similar to the following appear in the MATLAB command
window and a dynamically loadable executable results. On a 32-bit Windows system,
the Simulink software names the file ex_sfun_doubleit.mexw32.

Start Compiling ex_sfun_doubleit

mex ex_sfun_doubleit.c -Id:\work\lct\lct_demos

Finish Compiling ex_sfun_doubleit

Exit

As a convenience, you can generate, compile, and link the S-function in a single step by
calling legacy_code with the character vector 'generate_for_sim'. The function
also generates a TLC file for accelerated simulations, if the Options.useTlcWithAccel
field of the Legacy Code Tool data structure is set to 1.

Once you have generated a dynamically loadable executable, you or others can use it in a
model by adding an S-Function block that specifies the compiled S-function.

4-62

 Integrate C Functions Using Legacy Code Tool

Generating a Masked S-Function Block for Calling a Generated S-
Function

You have the option of using the Legacy Code Tool to generate a masked S-function
block (graphical representation) that is configured to call a generated C MEX S-function.
To generate such a block, call legacy_code with 'slblock_generate' as the first
argument and the name of the Legacy Code Tool data structure as the second argument.

legacy_code('slblock_generate', lct_spec);

The tool masks the block such that it displays the value of the OutputFcnSpec field. You
can then add the block to a model manually.

If you prefer that the Legacy Code Tool add the block to a model automatically, specify
the name of the model as a third argument. For example:

legacy_code('slblock_generate', lct_spec, 'myModel');

If the specified model (for example, myModel) exists, legacy_code opens the model and
adds the masked S-function block described by the Legacy Code Tool data structure. If
the model does not exist, the function creates a new model with the specified name and
adds the masked S-function block.

Forcing Simulink Accelerator Mode to Use S-Function TLC Inlining Code

If you are using Simulink Accelerator mode, you can generate and force the use of TLC
inlining code for the S-function generated by the Legacy Code Tool. To do this:

1 Generate a TLC block file for the S-function by calling the legacy_code function
with 'sfcn_tlc_generate' as the first argument and the name of the Legacy
Code Tool data structure as the second argument.

legacy_code('sfcn_tlc_generate', lct_spec);

Consider the example in “Integrate C Functions into Simulink Models with Legacy
Code Tool” on page 4-46. To generate a TLC file for the model shown at the end of
that example, enter the following command:

legacy_code('sfcn_tlc_generate', def);

2 Force Accelerator mode to use the TLC file by using the ssSetOptions SimStruct
function to set the S-function option SS_OPTION_USE_TLC_WITH_ACCELERATOR.

4-63

4 Writing S-Functions in C

Calling Legacy C++ Functions

To call a legacy C++ function after initializing the Legacy Code Tool data structure,
assign the value 'C++' to the Options.language field. For example,

def = legacy_code('initialize');

def.Options.language = 'C++';

To verify the new setting, enter

def.Options.language

Note: The Legacy Code Tool can interface with C++ functions, but not C++ objects. For
a work around, see “Legacy Code Tool Limitations” on page 4-65 in the Simulink
documentation.

Handling Multiple Registration Files

You can have multiple registration files in the same folder and generate an S-function
for each file with a single call to legacy_code. Likewise, you can use a single call to
legacy_code in order to compile and link the S-functions and another to generate
corresponding TLC block files, if appropriate.

Consider the following example, where lct_register_1, lct_register_2, and
lct_register_3 each create and initialize fields of a Legacy Code Tool structure.

defs1 = lct_register_1;

defs2 = lct_register_2;

defs3 = lct_register_3;

defs = [defs1(:);defs2(:);defs3(:)];

You can then use the following sequence of calls to legacy_code in order to generate
files based on the three registration files:

legacy_code('sfcn_cmex_generate', defs);

legacy_code('compile', defs);

legacy_code('sfcn_tlc_generate', defs);

Alternatively, you can process each registration file separately. For example:

defs1 = lct_register1;

4-64

 Integrate C Functions Using Legacy Code Tool

legacy_code('sfcn_cmex_generate', defs1);

legacy_code('compile', defs1);

legacy_code('sfcn_tlc_generate', defs1);

.

.

.

defs2 = lct_register2;

legacy_code('sfcn_cmex_generate', defs2);

legacy_code('compile', defs2);

legacy_code('sfcn_tlc_generate', defs2);

.

.

.

defs3 = lct_register3;

legacy_code('sfcn_cmex_generate', defs3);

legacy_code('compile', defs3);

legacy_code('sfcn_tlc_generate', defs3);

Deploying Generated S-Functions

You can deploy the S-functions that you generate with the Legacy Code Tool for use
by others. To deploy an S-function for simulation use only, you need to share only the
compiled dynamically loadable executable.

Legacy Code Tool Examples

To see examples of the Legacy Code Tool, in the MATLAB command window, type:

demo simulink

Legacy Code Tool examples are listed in Modeling Features > Custom Blocks with S-
functions, System Objects and Legacy Code Tool.

Legacy Code Tool Limitations

Legacy Code Tool

• Generates C MEX S-functions for existing functions written in C or C++. The tool does
not support transformation of MATLAB or Fortran functions.

• Can interface with C++ functions, but not C++ objects. One way of working around
this limitation is to use the S-Function Builder to generate the shell of an S-function

4-65

4 Writing S-Functions in C

and then call the legacy C++ code from the S-function's mdlOutputs callback
function.

• Does not support simulating continuous or discrete states. This prevents you from
using the mdlUpdate and mdlDerivatives callback functions. If your application
requires this support, see “Using the S-Function Builder to Incorporate Legacy Code”
on page 2-15.

• Always sets the S-functions flag for direct feedthrough on page 1-20
(sizes.DirFeedthrough) to true. Due to this setting and the preceding limitation,
the generated S-function cannot break algebraic loops.

• Supports only the continuous, but fixed in minor time step, sample time and offset on
page 1-22 option.

• Supports complex numbers, but only with Simulink built-in data types.
• Does not support use of function pointers as the output of the legacy function being

called.
• Does not support the following S-function features:

• Work vectors, other than general DWork vectors
• Frame-based input and output signals
• Port-based sample times
• Multiple block-based sample times

• Does not support use of the scope (::) operator for access of C++ class data and
methods. For static methods, you can write simple preprocessor macros, similar to the
following, to work around this:

#define CCommon_computeVectorDotProduct CCommon::computeVectorDotProduct

4-66

 Simulink Engine Interaction with C S-Functions

Simulink Engine Interaction with C S-Functions

In this section...

“Introduction” on page 4-67
“Process View” on page 4-67
“Data View” on page 4-75

Introduction

This section examines how the Simulink engine interacts with S-functions from two
perspectives:

• Process perspective, i.e., at which points in a simulation the engine invokes the S-
function.

• Data perspective, i.e., how the engine and the S-function exchange information
during a simulation.

Process View

The following figures show the order in which the Simulink engine invokes the callback
methods in an S-function. Solid rectangles indicate callbacks that always occur during
model initialization or at every time step. Dotted rectangles indicate callbacks that may
occur during initialization and/or at some or all time steps during the simulation loop.
See the documentation for each callback method to determine the exact circumstances
under which the engine invokes the callback.

Note The process view diagram represents the execution of S-functions that contain
continuous and discrete states, enable zero-crossing detection, and reside in a model
that uses a variable-step solver. Different solvers omit certain steps in the diagram.
For a better understanding of how the Simulink engine executes your particular S-
function, run the model containing the S-function using the Simulink debugger. For more
information, see “Introduction to the Debugger”.

In the following model initialization loop, the Simulink engine configures the S-
function for an upcoming simulation. The engine always makes the required calls to

4-67

4 Writing S-Functions in C

mdlInitializeSizes and mdlInitializeSampleTime to set up the fundamental
attributes of the S-function, including input and output ports, S-function dialog
parameters, work vectors, sample times, etc.

The engine calls additional methods, as needed, to complete the S-function initialization.
For example, if the S-function uses work vectors, the engine calls mdlSetWorkWidths.
Also, if the mdlInitializeSizes method deferred setting up input and output port
attributes, the engine calls any methods necessary to complete the port initialization,
such as mdlSetInputPortWidth, during signal propagation. The mdlStart method
calls the mdlCheckParameters and mdlProcessParameters methods if the S-function
uses dialog parameters.

4-68

 Simulink Engine Interaction with C S-Functions

4-69

4 Writing S-Functions in C

Note The mdlInitializeSizes callback method also runs when you enter the name of
a compiled S-function into the S-Function Block Parameters dialog box.

After initialization, the Simulink engine executes the following simulation loop. If the
simulation loop is interrupted, either manually or when an error occurs, the engine
jumps directly to the mdlTerminate method. If the simulation was manually halted, the
engine first completes the current time step before invoking mdlTerminate.

4-70

 Simulink Engine Interaction with C S-Functions

4-71

4 Writing S-Functions in C

If your model contains multiple S-Function blocks, the engine invokes a particular
method for every S-function before proceeding to the next method. For example,
the engine calls all the mdlInitializeSizes methods before calling any
mdlInitializeSampleTimes methods. The engine uses the block sorted order to
determine the order to execute the S-functions. See “What Is Sorted Order?” in Using
Simulink to learn more about how the engine determines the block sorted order.

Calling Structure for Code Generation

If you use the Simulink Coder product to generate code for a model containing S-
functions, the Simulink engine does not execute the entire calling sequence outlined
above. Initialization proceeds as outlined above until the engine reaches the mdlStart
method. The engine then calls the S-function methods shown in the following figure,
where the mdlRTW method is unique to the Simulink Coder product.

If the S-function resides in a conditionally executed subsystem, it is possible for the
generated code to interleave calls to mdlInitializeConditions and mdlStart.
Consider the following Simulink model sfcndemo_enablesub.

4-72

 Simulink Engine Interaction with C S-Functions

The model contains two nonvirtual subsystems, the conditionally executed enabled
subsystem named Reset and the atomic subsystem named Atomic. Each subsystem
contains an S-Function block that calls the S-function dsfunc.c, which models a
discrete state-space system with two states. The enabled subsystem Reset resets the
state values when the subsystem is enabled, and the output values when the subsystem
is disabled.

Using the generic real-time (GRT) target, the generated code for the model-wide Start
function calls the Start functions of the two subsystems before calling the model-wide
MdlInitialize function, as shown in the following code:

void MdlStart(void)

{

 /* snip */

 /* Start for enabled SubSystem: '<Root>/Reset' */

 sfcndemo_enablesub_Reset_Start();

 /* end of Start for SubSystem: '<Root>/Reset' */

 /* Start for atomic SubSystem: '<Root>/Atomic' */

 sfcndemo_enablesub_Atomic_Start();

 /* end of Start for SubSystem: '<Root>/Atomic' */

MdlInitialize();

4-73

4 Writing S-Functions in C

The Start function for the enabled subsystem calls the subsystem's
InitializeConditions function:

void sfcndemo_enablesub_Reset_Start(void)

{

 sfcndemo_enablesub_Reset_Init();

 /* snip */

}

The MdlInitialize function, called in MdlStart, contains a call to the
InitializeConditions function for the atomic subsystem:

void MdlInitialize(void)

{

 /* InitializeConditions for atomic SubSystem:

 '<Root>/Atomic' */

 sfcndemo_enablesub_Atomic_Init();

}

Therefore, the model-wide Start function interleaves calls to the Start and
InitializeConditions functions for the two subsystems and the S-functions they
contain.

For more information about the Simulink Coder product and how it interacts with S-
functions, see “S-Functions and Code Generation” (Simulink Coder).

Alternate Calling Structure for External Mode

When you are running a Simulink model in external mode, the calling sequence for S-
function routines changes as shown in the following figure.

4-74

 Simulink Engine Interaction with C S-Functions

The engine calls mdlRTW once when it enters external mode and again each time a
parameter changes or when you select Simulation > Update Diagram.

Note Running a Simulink model in external mode requires the Simulink Coder product.

Data View

S-function blocks have input and output signals, parameters, and internal states, plus
other general work areas. In general, block inputs and outputs are written to, and read
from, a block I/O vector. Inputs can also come from

• External inputs via the root Inport blocks
• Ground if the input signal is unconnected or grounded

Block outputs can also go to the external outputs via the root Outport blocks. In addition
to input and output signals, S-functions can have

• Continuous states
• Discrete states
• Other working areas such as real, integer, or pointer work vectors

You can parameterize S-function blocks by passing parameters to them using the S-
Function Block Parameters dialog box.

The following figure shows the general mapping between these various types of data.

4-75

4 Writing S-Functions in C

An S-function's mdlInitializeSizes routine sets the sizes of the various signals and
vectors. S-function methods called during the simulation loop can determine the sizes
and values of the signals.

An S-function method can access input signals in two ways:

• Via pointers
• Using contiguous inputs

Accessing Signals Using Pointers

During the simulation loop, access the input signals using

InputRealPtrsType uPtrs =

 ssGetInputPortRealSignalPtrs(S,portIndex)

This returns an array of pointers for the input port with index portIndex, where
portIndex starts at 0. There is one array of pointers for each input port. To access an
element of this array you must use

*uPtrs[element]

The following figure describes how to access the input signals of an S-function with two
inputs.

4-76

 Simulink Engine Interaction with C S-Functions

As shown in the previous figure, the input array pointers can point at noncontiguous
places in memory.

You can retrieve the output signal by using this code.

real_T *y = ssGetOutputPortSignal(S,outputPortIndex);

Accessing Contiguous Input Signals

An S-function's mdlInitializeSizes method can specify that the
elements of its input signals must occupy contiguous areas of memory, using
ssSetInputPortRequiredContiguous. If the inputs are contiguous, other methods
can use ssGetInputPortSignal to access the inputs.

Accessing Input Signals of Individual Ports

This section describes how to access all input signals of a particular port and write them
to the output port. The preceding figure shows that the input array of pointers can point
to noncontiguous entries in the block I/O vector. The output signals of a particular port
form a contiguous vector. Therefore, the correct way to access input elements and write
them to the output elements (assuming the input and output ports have equal widths) is
to use this code.

4-77

4 Writing S-Functions in C

int_T element;

int_T portWidth = ssGetInputPortWidth(S,inputPortIndex);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,inputPortIndex);

real_T *y = ssGetOutputPortSignal(S,outputPortIdx);

for (element=0; element<portWidth; element++) {

 y[element] = *uPtrs[element];

}

A common mistake is to try to access the input signals via pointer arithmetic. For
example, if you were to place

real_T *u = *uPtrs; /* Incorrect */

just below the initialization of uPtrs and replace the inner part of the above loop with

*y++ = *u++; /* Incorrect */

the code compiles, but the MEX file might crash the Simulink software. This is because it
is possible to access invalid memory (which depends on how you build your model). When
accessing the input signals incorrectly, a crash occurs when the signals entering your S-
function block are not contiguous. Noncontiguous signal data occurs when signals pass
through virtual connection blocks such as the Mux or Selector blocks.

To verify that your S-function correctly accesses wide input signals, pass a replicated
signal to each input port of your S-function. To do this, create a Mux block with the
number of input ports equal to the width of the desired signal entering your S-function.
Then, connect the driving source to each S-function input port, as shown in the following
figure. Finally, run your S-function using this input signal to verify that it does not crash
and produces expected results.

4-78

 Write Callback Methods

Write Callback Methods

Writing an S-function basically involves creating implementations of the callback
functions that the Simulink engine invokes during a simulation. For guidelines on
implementing a particular callback, see the documentation for the callback. For
information on using callbacks to implement specific block features, such as parameters
or sample times, see “Implement Block Features”.

4-79

4 Writing S-Functions in C

S-Functions in Normal Mode Referenced Models

Note: For additional information, see “Model Referencing Limitations”.

When a C S-function appears in a referenced model that executes in Normal mode,
successful execution is impossible if all of the following are true:

• The S-function has both an mdlProcessParameters function and an mdlStart
function.

• The mdlProcessParameters function depends on the mdlStart function.
• The referenced model calls mdlProcessParameters before calling mdlStart.

Execution fails because mdlProcessParameters has dependency requirements
that mdlStart has not satisfied. Automated analysis cannot guard against all
possible causes of such failure: you must check your code manually and verify that
mdlProcessParameters is not in any way dependent on mdlStart being called first.
Examples of such dependency include:

• Allocating memory in mdlStart and using that memory in
mdlProcessParameters. This is often done using ssSetUserData and
ssGetUserData.

• Initializing any DWork or any global memory in mdlStart and reading the values in
mdlProcessParameters.

To remind you to check for any such dependency problems, an error message appears
by default for any S-function that is used in a Normal mode referenced model and
contains both an mdlProcessParameters function and an mdlStart function. The
error message does not mean that any dependency problems exist, but only that they
might exist.

If you get such an error message, check for any problematic dependencies in the S-
function, and recode as needed to eliminate them. When no such dependencies exist,
you can safely suppress the error message and use the S-function in a Normal mode
referenced model. To certify that the S-function is compliant, and the message is
therefore unnecessary, include the following statement in mdlInitializeSizes:
ssSetModelReferenceNormalModeSupport (S, MDL_START_AND_MDL_PROCESS_PARAMS_OK);

For information about referenced models, see “Overview of Model Referencing”.

4-80

 S-Functions in Normal Mode Referenced Models

Supporting the Use of Multiple Instances of Referenced Models That Are
in Normal Mode

You may need to modify S-functions that are used by a model so that the S-functions
work with multiple instances of referenced models in Normal mode. The S-functions
must indicate explicitly that they support multiple exec instances.

• For C S-functions, use ssSupportsMultipleExecInstances(s, true).
• For MATLAB file S-functions, use blockSupportMultipleExecInstances =

true.

The limitations for using S-functions with multiple instances of referenced models in
Normal mode are the same as the limitations that apply to using S-functions with For
Each Subsystem block.

4-81

4 Writing S-Functions in C

Debug C MEX S-Functions
In this section...

“About Debugging C MEX S-Functions” on page 4-82
“Debug in Simulink Environment” on page 4-82
“Debug Using Third-Party Software” on page 4-85

About Debugging C MEX S-Functions

This section provides high-level tips on how to debug C MEX S-functions within the
Simulink environment and using third-party software. The following lists highlight
some of the more common errors made when writing an S-function. For a more detailed
analysis, use the debugger provided with your C compiler.

The examples at the end of this section show how to debug a C MEX S-function during
simulation, using third-party software.

• The first example uses the Microsoft Visual C++® .NET (version 7.0) environment.
• The second example debugs an S-function on The Open Group UNIX® platform.

Refer to your compiler documentation for further information on debugging files.

Debug in Simulink Environment

Before you begin, make sure you have a good understanding of how to write C S-
functions and the required callback methods. For assistance:

• Read the section “Available S-Function Implementations” on page 2-2 to determine if
you implemented your S-function using the most appropriate method.

• Use the S-Function Builder block to generate simple S-functions and study the
contents of the source files.

• Inspect the S-function example models available in sfundemos. The folder
matlabroot/simulink/src (open) contains the S-function source files for these
models.

If your S-function is not compiling, first ensure that the mex command is properly
configured and your S-function includes all necessary files:

• Run mex -setup to ensure that your compiler is correctly installed.

4-82

 Debug C MEX S-Functions

• Confirm that you are passing all the source files needed by your S-function to the mex
command.

• Check that these additional source files are on the MATLAB path.
• Make sure that your S-function includes the simstruc.h header file. If you are

accessing legacy code, make sure that any header files needed by that code are also
included in your S-function.

• Make sure that your S-function does not include the simstruc_types.h or
rtwtypes.h header files. These Simulink and Simulink Coder header files are
automatically included for you. If you are compiling your S-function as a MEX file for
simulation, including the rtwtypes.h file results in errors.

If the mex command compiles your S-function, but your S-function does not simulate or
the simulation produces incorrect results, inspect your S-function source code to ensure
that:

• You are not overwriting important memory
• You are not using any uninitialized variables

The following table describes additional common S-function constructs that can lead to
compilation and simulation errors.

Does your S-function... Look for...

Use for loops to assign
memory?

Instances where your S-function might inadvertently
assign values outside of the array bounds.

Use global variables? Locations in the code where the global variables can
be corrupted. If you have multiple instances of your
S-function in a model, they can write over the same
memory location.

Allocate memory? Memory your S-function does not deallocate. Always
free memory that your S-function allocates, using the
malloc and free commands to allocate and deallocate
memory, respectively.

Have direct feedthrough? An incorrect direct feedthrough flag setting in your
S-function. An S-function can access its inputs in
the mdlOutputs method only if it specifies that the
input ports have direct feedthrough. Accessing input
signals in mdlOutputs when the input port direct
feedthrough flag is set to false leads to indeterminate

4-83

4 Writing S-Functions in C

Does your S-function... Look for...

behavior. To check if you have a direct feedthrough
flag incorrectly set, you can turn on the model property
TryForcingSFcnDF using the command
set_param(model_name,'TryForcingSFcnDF','on')

This command specifies that all S-functions in the
model model_name have a direct feedthrough flag
of true for all their input ports. After you turn on
this property, if your simulation produces correct
answers without causing an algebraic loop, one of
your S-functions in the model potentially set an
incorrect direct feedthrough flag. Consult the file
sfuntmpl_directfeed.txt for more information on
diagnosing direct feedthrough errors.

Access input signals correctly? Instances in the code where your S-function uses
incorrect macros to access input signals, for example
when accessing a discontiguous signal. Discontiguous
signals result when an S-function input port is fed by
a Selector block that selects every other element of a
vector signal. For discontiguous input signals, use the
following commands:
// In mdlInitializeSizes

ssSetInputPortRequiredContiguous(S, 0, 0);

// In mdlOutputs, access the inputs using

InputRealPtrsType uPtrs1 =

 ssGetInputPortRealSignalPtrs(S,0);

For contiguous input signals, use the following
commands:
// In mdlInitializeSizes

ssSetInputPortRequiredContiguous(S, 0, 1);

// In mdlOutputs, access the inputs using

const real_T *u0 =

 (const real_T*) ssGetInputPortSignal(S,0);

/* If ssSetInputPortRequiredContiguous is 0,

ssGetInputPortSignal returns an invalid pointer.*/

4-84

 Debug C MEX S-Functions

Debugging Techniques

You can use the following techniques for additional assistance with debugging your S-
function.

• Compile the S-function in debug mode using the -g option for the mex command. This
enables additional diagnostics features that are called only when you compile your S-
function in debug mode.

• Place ssPrintf statements inside your callback methods to ensure that they are
running and that they are executing in the order you expect. Also, use ssPrintf
statements to print return values to the MATLAB command prompt to check if your
code is producing the expected results.

• Type feature memstats at the MATLAB command prompt to query the memory
usage.

• Use the MATLAB File & folder Comparisons tool, or other text differencing
application, to look for textual changes in different versions of your S-function. This
can help you locate changes that disabled an S-function that previously compiled and
ran. See “Comparing Files and Folders” (MATLAB) for instructions on how to use the
File & folder Comparisons tool.

• Use settings on the Configuration Parameters dialog box to check for memory
problems.

• Set the Solver data inconsistency diagnostic to warning.
• Set the Array bounds exceeded diagnostic to warning or error (See “Checking

Array Bounds” on page 8-61 for more information on how to use this
diagnostic).

• Turn the Signal storage reuse optimization off.
• Separate the S-function's algorithm from its Simulink interface then use the S-

Function Builder to generate a new Simulink interface for the algorithm. The S-
Function Builder ensures that the interface is implemented in the most consistent
method.

Debug Using Third-Party Software

You can debug and profile the algorithm portion of your S-function using third-party
software if you separate the algorithm from the S-function's Simulink interface. You
cannot debug and profile the S-function's interface with the Simulink engine because the
Simulink interface code does not ship with the product.

4-85

4 Writing S-Functions in C

You can additionally use third-party software to debug an S-function during simulation,
as shown in the following two examples. These examples use the Simulink model
sfcndemo_timestwo and the C MEX S-function timestwo.c.

Debugging C MEX S-Functions Using the Microsoft Visual C++ .NET Environment

Before beginning the example, save the files sfcndemo_timestwo and timestwo.c into
your working folder.

1 Open the Simulink model sfcndemo_timestwo.
2 Create a version of the MEX file that you can debug by compiling the C file using the

mex command with the -g option.

mex -g timestwo.c

The -g option creates the executable timestwo.mexw32 with debugging symbols
included. At this point, you may want to simulate the sfcndemo_timestwo model to
ensure it runs properly.

3 Without exiting the MATLAB environment, start the Microsoft Development
Environment.

4 From the Microsoft Development Environment menu bar, select Tools > Debug
Processes.

5 In the Processes dialog box that opens, select the MATLAB.exe process in the
Available Processes list and click Attach.

6 In the Attach to Process dialog box that opens, select Native in the list of program
types and click OK. You should now be attached to the MATLAB process.

7 Click Close on the Processes dialog box.
8 Clear the MEX functions in MATLAB using the clear command.

clear mex

9 From the Microsoft Development Environment File menu, select Open > File.
Select the timestwo.c source files from the file browser that opens.

10 Set a breakpoint on the desired line of code by right-clicking on the line and selecting
Insert Breakpoint from the context menu. If you have not previously run the
model, the breakpoint may show up with a question mark, indicating that the
executable is not loaded. Subsequently running the model loads the .mexw32 file
and removes the question mark from the breakpoint.

4-86

 Debug C MEX S-Functions

11 Start the simulation from the sfcndemo_timestwo Simulink model. You should be
running the S-function in the Microsoft Development Environment and can debug
the file within that environment.

Debugging C MEX S-Functions on The Open Group UNIX Platforms

Before beginning the example, save the files sfcndemo_timestwo and timestwo.c into
your working folder.

Create a version of the MEX file for debugging:

1 Open the Simulink model sfcndemo_timestwo.
2 Create a version of the MEX file that you can debug by compiling the C file using the

mex command with the -g option:

mex -g timestwo.c

The -g option creates the executable timestwo.mexa64 with debugging symbols
included.

3 Simulate the sfcndemo_timestwo model to ensure it runs properly.
4 Exit the MATLAB environment.

Debug the MEX file:

1 Start the MATLAB environment in debugging mode using this command:

matlab -D<nameOfDebugger>

The -D flag starts the MATLAB environment within the specified debugger. For
example, to use the gdb debugging tool on the Linux® platform, enter this command.

matlab -Dgdb

2 Once the debugger has loaded, continue loading the MATLAB environment by typing
run at the debugger prompt (gdb).

run -nodesktop

Starting program: matlab

...

Note: The debugger might stop on spurious segmentation violation signals that
result from interactions with the underlying Java® Virtual Machine (JVM™). You

4-87

4 Writing S-Functions in C

can ignore these messages and continue, using the cont command. If you are not
debugging segmentation violation signals and want to suppress these messages,
enter the command handle SIGSEGV nostop noprint pass.

3 Open the sfcndemo_timestwo Simulink model.
4 Press Ctrl+C to open the debugger.
5 At the (gdb) prompt, set breakpoints in the source code, for example:

break timestwo.c:37

Breakpoint 1 (timestwo.c:37) pending

(gdb)

6 At the (gdb) prompt, enter the cont command to continue.

cont

7 Use your debugger routines to debug the S-function. For more information, see the
gdb documentation that is part of your operating system documentation.

4-88

 Convert Level-1 C MEX S-Functions

Convert Level-1 C MEX S-Functions
In this section...

“Guidelines for Converting Level-1 C MEX S-Functions to Level-2” on page 4-89
“Obsolete Macros” on page 4-91

Guidelines for Converting Level-1 C MEX S-Functions to Level-2

Level-2 S-functions were introduced with Simulink version 2.2. Level-1 S-functions refer
to S-functions that were written to work with Simulink version 2.1 and previous releases.
Level-1 S-functions are compatible with Simulink version 2.2 and subsequent releases;
you can use them in new models without making any code changes. However, to take
advantage of new features in S-functions, Level-1 S-functions must be updated to Level-2
S-functions. Here are some guidelines:

• Start by looking at simulink/src/sfunctmpl_doc.c. This template S-function file
concisely summarizes Level-2 S-functions.

• At the top of your S-function file, add this define:

#define S_FUNCTION_LEVEL 2

• Update the contents of mdlInitializeSizes. In particular, add the following error
handling for the number of S-function parameters:
ssSetNumSFcnParams(S, NPARAMS); /*Number of expected parameters*/

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 /* Return if number of expected != number of actual parameters */

 return;

}

Set up the inputs using:

if (!ssSetNumInputPorts(S, 1)) return; /*Number of input ports */

ssSetInputPortWidth(S, 0, width); /* Width of input

 port one (index 0)*/

ssSetInputPortDirectFeedThrough(S, 0, 1); /* Direct feedthrough

 or port one */

ssSetInputPortRequiredContiguous(S, 0);

Set up the outputs using:

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, width); /* Width of output port

 one (index 0) */

• If your S-function has a nonempty mdlInitializeConditions, update it to the
following form:

#define MDL_INITIALIZE_CONDITIONS

static void mdlInitializeConditions(SimStruct *S)

4-89

4 Writing S-Functions in C

{

}

Otherwise, delete the function.

• Access the continuous states using ssGetContStates. The ssGetX macro has
been removed.

• Access the discrete states using ssGetRealDiscStates(S). The ssGetX macro
has been removed.

• For mixed continuous and discrete state S-functions, the state vector no longer
consists of the continuous states followed by the discrete states. The states are
saved in separate vectors and hence might not be contiguous in memory.

• The mdlOutputs prototype has changed from

static void mdlOutputs(real_T *y, const real_T *x,

 const real_T *u, SimStruct *S, int_T tid)

to

static void mdlOutputs(SimStruct *S, int_T tid)

Since y, x, and u are not explicitly passed in to Level-2 S-functions, you must use

• ssGetInputPortSignal to access inputs
• ssGetOutputPortSignal to access the outputs
• ssGetContStates or ssGetRealDiscStates to access the states

• The mdlUpdate function prototype has changed from

void mdlUpdate(real_T *x, real_T *u, Simstruct *S, int_T tid)

to

void mdlUpdate(SimStruct *S, int_T tid)

• If your S-function has a nonempty mdlUpdate, update it to this form:

#define MDL_UPDATE

static void mdlUpdate(SimStruct *S, int_T tid)

{

}

Otherwise, delete the function.
4-90

 Convert Level-1 C MEX S-Functions

• If your S-function has a nonempty mdlDerivatives, update it to this form:

#define MDL_DERIVATIVES

static void mdlDerivatives(SimStruct *S)

{

}

Otherwise, delete the function.
• Replace all obsolete SimStruct macros. See “Obsolete Macros” on page 4-91 for a

complete list of obsolete macros.
• When converting Level-1 S-functions to Level-2 S-functions, you should build your S-

functions with full (i.e., highest) warning levels. For example, if you have gcc on a
UNIX1 system, use these options with the mex utility.

mex CC=gcc CFLAGS=-Wall sfcn.c

If your system has Lint, use this code.

lint -DMATLAB_MEX_FILE -I<matlabroot>/simulink/include

 -Imatlabroot/extern/include sfcn.c

On a PC, to use the highest warning levels, you must create a project file inside the
integrated development environment (IDE) for the compiler you are using. Within the
project file, define MATLAB_MEX_FILE and add

matlabroot/simulink/include

matlabroot/extern/include

to the path (be sure to build with alignment set to 8).

Obsolete Macros

The following macros are obsolete. Replace each obsolete macro with the macro specified
in the following table.

Obsolete Macro Replace with

ssGetU(S), ssGetUPtrs(S) ssGetInputPortSignalPtrs(S,port),
ssGetInputPortSignal(S,port)

ssGetY(S) ssGetOutputPortRealSignal(S,port)

1. UNIX is a registered trademark of The Open Group in the United States and other countries.

4-91

4 Writing S-Functions in C

Obsolete Macro Replace with

ssGetX(S) ssGetContStates(S),

ssGetRealDiscStates(S)

ssGetStatus(S) Normally not used, but ssGetErrorStatus(S)
is available.

ssSetStatus(S,msg) ssSetErrorStatus(S,msg)

ssGetSizes(S) Specific call for the wanted item (i.e.,
ssGetNumContStates(S))

ssGetMinStepSize(S) No longer supported
ssGetPresentTimeEvent(S,sti) ssGetTaskTime(S,sti)

ssGetSampleTimeEvent(S,sti) ssGetSampleTime(S,sti)

ssSetSampleTimeEvent(S,t) ssSetSampleTime(S,sti,t)

ssGetOffsetTimeEvent(S,sti) ssGetOffsetTime(S,sti)

ssSetOffsetTimeEvent(S,sti,t) ssSetOffsetTime(S,sti,t)

ssIsSampleHitEvent(S,sti,tid) ssIsSampleHit(S,sti,tid)

ssGetNumInputArgs(S) ssGetNumSFcnParams(S)

ssSetNumInputArgs(S, numInputArgs) ssSetNumSFcnParams(S,numInputArgs)

ssGetNumArgs(S) ssGetSFcnParamsCount(S)

ssGetArg(S,argNum) ssGetSFcnParam(S,argNum)

ssGetNumInputs ssGetNumInputPorts(S) and
ssGetInputPortWidth(S,port)

ssSetNumInputs ssSetNumInputPorts(S,nInputPorts) and
ssSetInputPortWidth(S,port,val)

ssGetNumOutputs ssGetNumOutputPorts(S) and
ssGetOutputPortWidth(S,port)

ssSetNumOutputs ssSetNumOutputPorts(S,nOutputPorts)

and ssSetOutputPortWidth(S,port,val)

4-92

5

Creating C++ S-Functions

The procedure for creating C++ S-functions is nearly the same as that for creating C S-
functions. The following sections explain the differences.

• “Create a C++ Source File” on page 5-2
• “Make C++ Objects Persistent” on page 5-3
• “Build C++ S-Functions” on page 5-4

5 Creating C++ S-Functions

Create a C++ Source File

To create a C++ S-function from a C S-function, see “C++ References” on page 5-2.

In addition, set up the MEX function to use a C++ compiler (see “Build MEX File”
(MATLAB)). To build the C++ S-function, see “Build C++ S-Functions” on page 5-4.

C++ References

[1] Meyers, S., More Effective C++, Boston, Addison-Wesley, 1996, Item 34

[2] Oualline, S., Practical C++ Programming, Sebastopol, California, O'Reilly, 1995,
Chapter 27

[3] Stroustrup, B., The C++ Programming Language, 3rd Ed., Boston, Addison-Wesley,
1997, Appendix B

5-2

 Make C++ Objects Persistent

Make C++ Objects Persistent

Your C++ callback methods might need to create persistent C++ objects, that is, objects
that continue to exist after the method exits. For example, a callback method might need
to access an object created during a previous invocation. Or one callback method might
need to access an object created by another callback method. To create persistent C++
objects in your S-function:

1 Create a pointer work vector to hold pointers to the persistent object between
method invocations:
static void mdlInitializeSizes(SimStruct *S)

{

 ...

 ssSetNumPWork(S, 1); // reserve element in the pointers vector

 // to store a C++ object

 ...

 }

2 Store a pointer to each object that you want to be persistent in the pointer work
vector:
 static void mdlStart(SimStruct *S)

 {

 ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the

 } // pointers vector

3 Retrieve the pointer in any subsequent method invocation to access the object:
static void mdlOutputs(SimStruct *S, int_T tid)

{

 counter *c = (counter *) ssGetPWork(S)[0]; // retrieve C++ object from

 real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and

 y[0] = c->output(); // use member functions of

} // the object

4 Destroy the objects when the simulation terminates:
static void mdlTerminate(SimStruct *S)

{

 counter *c = (counter *) ssGetPWork(S)[0]; // retrieve and destroy C++

 delete c; // object in the termination

} // function

5-3

5 Creating C++ S-Functions

Build C++ S-Functions

Use the mex command to build C++ S-functions exactly the way you use it to build C S-
functions. For example, to build the C++ version of the sfun_counter_cpp.cpp file,
enter

mex sfun_counter_cpp.cpp

at the MATLAB command prompt.

Note The extension of the source file for a C++ S-function must be .cpp to ensure that
the compiler treats the contents of the file as C++ code.

5-4

6

Creating Fortran S-Functions

• “Create Level-2 Fortran S-Functions” on page 6-2
• “Port Legacy Code” on page 6-11

6 Creating Fortran S-Functions

Create Level-2 Fortran S-Functions

In this section...

“About Creating Level-2 Fortran S-Functions” on page 6-2
“Template File” on page 6-2
“C/Fortran Interfacing Tips” on page 6-2
“Constructing the Gateway” on page 6-6
“Example C MEX S-Function Calling Fortran Code” on page 6-9

About Creating Level-2 Fortran S-Functions

To use the features of a Level-2 S-function with Fortran code, you must write a skeleton
S-function in C that has code for interfacing to the Simulink software and also calls your
Fortran code.

Using the C MEX S-function as a gateway is quite simple if you are writing the Fortran
code from scratch. If instead you have legacy Fortran code that exists as a standalone
simulation, there is some work to be done to identify parts of the code that need to be
registered with the Simulink software, such as identifying continuous states if you are
using variable-step solvers or getting rid of static variables if you want to have multiple
copies of the S-function in a Simulink model (see “Port Legacy Code” on page 6-11).

Template File

The file sfuntmpl_gate_fortran.c contains a template for creating a C MEX-file S-
function that invokes a Fortran subroutine in its mdlOutputs method. It works with a
simple Fortran subroutine if you modify the Fortran subroutine name in the code. The
template allocates DWork vectors to store the data that communicates with the Fortran
subroutine. See “How to Use DWork Vectors” on page 7-7 for information on setting
up DWork vectors.

C/Fortran Interfacing Tips

The following are some tips for creating the C-to-Fortran gateway S-function.

6-2

 Create Level-2 Fortran S-Functions

MEX Environment

mex -setup needs to find the MATLAB, C, and the Fortran compilers, but it can work
with only one of these compilers at a time. If you change compilers, you must run mex -
setup between other mex commands.

Test the installation and setup using sample MEX-files from the MATLAB, C, and
Fortran MEX examples in the folder matlabroot/extern/examples/mex (open), as
well as S-function examples.

If using a C compiler on a Microsoft Windows platform, test the mex setup using the
following commands and the example C source code file, yprime.c, in matlabroot/
extern/examples/mex.

cd(fullfile(matlabroot,'\extern\examples\mex'))

mex yprime.c

If using a Fortran compiler, test the mex setup using the following commands and
the example Fortran source code files, yprime.F and yprimefg.F, in matlabroot/
extern/examples/mex.

cd(fullfile(matlabroot,'\extern\examples\mex'))

mex yprimef.f yprimefg.f

For more information, see “Build MEX File” (MATLAB).

Compiler Compatibility

Your C and Fortran compilers need to use the same object format. If you use the
compilers explicitly supported by the mex command this is not a problem. When you use
the C gateway to Fortran, it is possible to use Fortran compilers not supported by the
mex command, but only if the object file format is compatible with the C compiler format.
Common object formats include ELF and COFF.

The compiler must also be configurable so that the caller cleans up the stack instead of
the callee. Intel® Visual Fortran (the replacement for Compaq® Visual Fortran) has the
default stack cleanup as the caller.

Symbol Decorations

Symbol decorations can cause run-time errors. For example, g77 decorates subroutine
names with a trailing underscore when in its default configuration. You can either
recognize this and adjust the C function prototype or alter the Fortran compiler's name

6-3

6 Creating Fortran S-Functions

decoration policy via command-line switches, if the compiler supports this. See the
Fortran compiler manual about altering symbol decoration policies.

If all else fails, use utilities such as od (octal dump) to display the symbol names. For
example, the command

od -s 2 <file>

lists character vectors and symbols in binary (.obj) files.

These binary utilities can be obtained for the Windows platform as well. The MKS, Inc.
company provides commercial versions of powerful utilities for The Open Group UNIX
platforms. Additional utilities can also be obtained free on the Web. hexdump is another
common program for viewing binary files. As an example, here is the output of

od -s 2 sfun_atmos_for.o

on a Linux platform.

 0000115 E¨

 0000136 E¨

 0000271 E¨”

 0000467 ˙E¨@
 0000530 ˙E¨
 0000575 E¨ E 5@

 0001267 CfƒVC- :C

 0001323 :|.-:8˘#8 Kw6
 0001353 ?333@

 0001364 333

 0001414 01.01

 0001425 GCC: (GNU) egcs-2.91.66 19990314/

 0001522 .symtab

 0001532 .strtab

 0001542 .shstrtab

 0001554 .text

 0001562 .rel.text

 0001574 .data

 0001602 .bss

 0001607 .note

 0001615 .comment

 0003071 sfun_atmos_for.for

 0003101 gcc2_compiled.

 0003120 rearth.0

 0003131 gmr.1

 0003137 htab.2

6-4

 Create Level-2 Fortran S-Functions

 0003146 ttab.3

 0003155 ptab.4

 0003164 gtab.5

 0003173 atmos_

 0003207 exp

 0003213 pow_d

Note that Atmos has been changed to atmos_, which the C program must call to be
successful.

With Visual Fortran on 32-bit Windows machines, the symbol is suppressed, so that
Atmos becomes ATMOS (no underscore).

Fortran Math Library

Fortran math library symbols might not match C math library symbols. For example,
A^B in Fortran calls library function pow_dd, which is not in the C math library. In these
cases, you must tell mex to link in the Fortran math library. For gcc environments, these
routines are usually found in /usr/local/lib/libf2c.a, /usr/lib/libf2c.a, or
equivalent.

The mex command becomes

mex -L/usr/local/lib -lf2c cmex_c_file fortran_object_file

Note On a UNIX system, the -lf2c option follows the conventional UNIX library linking
syntax, where -l is the library option itself and f2c is the unique part of the library file's
name, libf2c.a. Be sure to use the -L option for the library search path, because -I is
only followed while searching for include files.

The f2c package can be obtained for the Windows and UNIX environments from the
Internet. The file libf2c.a is usually part of g77 distributions, or else the file is not
needed as the symbols match. In obscure cases, it must be installed separately, but even
this is not difficult once the need for it is identified.

On 32-bit Windows machines, using Microsoft Visual C++ and Intel Visual Fortran
10.1, this example can be compiled using the following two mex commands. Enter each
command on one line. The mex -setup C command must be run to return to the C
compiler before executing the second command. In the second command, replace the
variable IFORT_COMPILER10 with the name of the system's environment variable
pointing to the Visual Fortran 10.1 root folder on your system.

6-5

6 Creating Fortran S-Functions

mex -v -c fullfile(matlabroot,'toolbox','simulink','simdemos','simfeatures',

'srcFortran','sfun_atmos_sub.F'), -f fullfile(matlabroot,'bin','win32',

'mexopts','intelf10msvs2005opts.bat'))

!mex -v -L"%IFORT_COMPILER10%\IA32\LIB" -llibifcoremd -lifconsol

-lifportmd -llibmmd -llibirc sfun_atmos.c sfun_atmos_sub.obj

On 64-bit Windows machines, using Visual C++ and Visual Fortran 10.1, this example
can be compiled using the following two mex commands (each command is on one line).
The mex -setup C command must be run to return to the C compiler before executing
the second command. The variable IFORT_COMPILER10 is the name of the system's
environment variable pointing to the Visual Fortran 10.1 root folder and may vary on
your system. Replace matlabroot with the path name to your MATLAB root folder.
mex -v -c fullfile(matlabroot,'toolbox','simulink','simdemos','simfeatures',

'srcFortran','sfun_atmos_sub.F'), -f fullfile(matlabroot,'bin','win64','mexopts',

'intelf10msvs2005opts.bat'))

!mex -v -L"%IFORT_COMPILER10%\EM64T\LIB" -llibifcoremd -lifconsol

-lifportmd -llibmmd -llibirc sfun_atmos.c sfun_atmos_sub.obj

CFortran

Or you can try using CFortran to create an interface. CFortran is a tool for automated
interface generation between C and Fortran modules, in either direction. Search the Web
for cfortran or visit

http://www-zeus.desy.de/~burow/cfortran/

for downloading.

Choosing a Fortran Compiler

On a Windows machine, using Visual C++ with Fortran is best done with Visual Fortran
10.1.

For an up-to-date list of all the supported compilers, see the MathWorks supported and
compatible compiler list at:

 http://www.mathworks.com/support/compilers/current_release/

Constructing the Gateway

The mdlInitializeSizes and mdlInitializeSampleTimes methods are coded in C.
It is unlikely that you will need to call Fortran routines from these S-function methods.
In the simplest case, the Fortran is called only from mdlOutputs.

6-6

http://www.mathworks.com/support/compilers/current_release/

 Create Level-2 Fortran S-Functions

Simple Case

The Fortran code must at least be callable in one-step-at-a-time fashion. If the code
doesn't have any states, it can be called from mdlOutputs and no mdlDerivatives or
mdlUpdate method is required.

Code with States

If the code has states, you must decide whether the Fortran code can support a variable-
step solver or not. For fixed-step solver only support, the C gateway consists of a call
to the Fortran code from mdlUpdate, and outputs are cached in an S-function DWork
vector so that subsequent calls by the Simulink engine into mdlOutputs will work
properly and the Fortran code won't be called until the next invocation of mdlUpdate.
In this case, the states in the code can be stored however you like, typically in the work
vector or as discrete states.

If instead the code needs to have continuous time states with support for variable-step
solvers, the states must be registered and stored with the engine as doubles. You do
this in mdlInitializeSizes (registering states), then the states are retrieved and
sent to the Fortran code whenever you need to execute it. In addition, the main body
of code has to be separable into a call form that can be used by mdlDerivatives to
get derivatives for the state integration and also by the mdlOutputs and mdlUpdate
methods as appropriate.

Setup Code

If there is a lengthy setup calculation, it is best to make this part of the code separable
from the one-step-at-a-time code and call it from mdlStart. This can either be a separate
SUBROUTINE called from mdlStart that communicates with the rest of the code through
COMMON blocks or argument I/O, or it can be part of the same piece of Fortran code that
is isolated by an IF-THEN-ELSE construct. This construct can be triggered by one of the
input arguments that tells the code if it is to perform either the setup calculations or the
one-step calculations.

SUBROUTINE Versus PROGRAM

To be able to call Fortran from the Simulink software directly without having to launch
processes, etc., you must convert a Fortran PROGRAM into a SUBROUTINE. This consists of
three steps. The first is trivial; the second and third can take a bit of examination.

1 Change the line PROGRAM to SUBROUTINE subName.

6-7

6 Creating Fortran S-Functions

Now you can call it from C using C function syntax.
2 Identify variables that need to be inputs and outputs and put them in the

SUBROUTINE argument list or in a COMMON block.

It is customary to strip out all hard-coded cases and output dumps. In the Simulink
environment, you want to convert inputs and outputs into block I/O.

3 If you are converting a standalone simulation to work inside the Simulink
environment, identify the main loop of time integration and remove the loop and,
if you want the Simulink engine to integrate continuous states, remove any time
integration code. Leave time integrations in the code if you intend to make a discrete
time (sampled) S-function.

Arguments to a SUBROUTINE

Most Fortran compilers generate SUBROUTINE code that passes arguments by reference.
This means that the C code calling the Fortran code must use only pointers in the
argument list.

PROGRAM ...

becomes

SUBROUTINE somename(U, X, Y)

A SUBROUTINE never has a return value. You manage I/O by using some of the
arguments for input, the rest for output.

Arguments to a FUNCTION

A FUNCTION has a scalar return value passed by value, so a calling C program
should expect this. The argument list is passed by reference (i.e., pointers) as in the
SUBROUTINE.

If the result of a calculation is an array, then you should use a subroutine, as a
FUNCTION cannot return an array.

Interfacing to COMMON Blocks

While there are several ways for Fortran COMMON blocks to be visible to C code, it is often
recommended to use an input/output argument list to a SUBROUTINE or FUNCTION. If the

6-8

 Create Level-2 Fortran S-Functions

Fortran code has already been written and uses COMMON blocks, it is a simple matter to
write a small SUBROUTINE that has an input/output argument list and copies data into
and out of the COMMON block.

The procedure for copying in and out of the COMMON block begins with a write of the
inputs to the COMMON block before calling the existing SUBROUTINE. The SUBROUTINE
is called, then the output values are read out of the COMMON block and copied into the
output variables just before returning.

Example C MEX S-Function Calling Fortran Code

The S-function example sfcndemo_atmos contains an example of a C MEX S-
function calling a Fortran subroutine. The Fortran subroutine Atmos is in the file
sfun_atmos_sub.F. This subroutine calculates the standard atmosphere up to 86
kilometers. The subroutine has four arguments.

SUBROUTINE Atmos(alt, sigma, delta, theta)

The gateway C MEX S-function, sfun_atmos.c, declares the Fortran subroutine.

/*

 * Windows uses upper case for Fortran external symbols

 */

#ifdef _WIN32

#define atmos_ ATMOS

#endif

extern void atmos_(float *alt,

 float *sigma,

 float *delta,

 float *theta);

The mdlOutputs method calls the Fortran subroutine using pass-by-reference for the
arguments.

 /* call the Fortran routine using pass-by-reference */

 atmos_(&falt, &fsigma, &fdelta, &ftheta);

To see this example working in the sample model sfcndemo_atmos, enter the following
command at the MATLAB command prompt.

sfcndemo_atmos

6-9

6 Creating Fortran S-Functions

Building Gateway C MEX S-Functions on a Windows System

On 64-bit Windows systems using Intel C++ 12.0 and Intel Visual Fortran 12, you need
to use separate commands to compile the Fortran file and then link it to the C gateway
file. Each command is on one line.

1 Run cd(matlabroot) to go to your MATLAB root.
2 Run mex -setup Fortran to select a Fortran compiler.
3 Compile the Fortran file using the following command. Enter the command on one

line.
mex -v -c toolbox/simulink/simdemos/simfeatures/srcFortran/sfun_atmos_sub.F ...

-f bin/win64/mexopts/intelf12msvs2008opts.bat

4 Run mex -setup C to select a C compiler.
5 Link the compiled Fortran subroutine to the gateway C MEX S-function using the

following command. The variable IFORT_COMPILER12 is the name of the system's
environment variable pointing to the Visual Fortran 12 root folder and may vary on
your system.
!mex -v -L"%IFORT_COMPILER12%\IA64\LIB" -llibifcoremd -lifconsol -lifportmd ...

-llibmmd -llibirc

toolbox\simulink\simdemos\simfeatures\srcFortran\sfun_atmos.c sfun_atmos_sub.obj

mex -v -c toolbox/simulink/simdemos/simfeatures/srcFortran/sfun_atmos_sub.F

-f bin/win64/mexopts/intelf12msvs2008opts.bat

Building Gateway C MEX S-Functions on a UNIX System

Build the gateway on a UNIX system using the command

mex sfun_atmos.c sfun_atmos_sub.o

On some UNIX systems where the C and Fortran compilers were installed separately (or
are not aware of each other), you might need to reference the library libf2c.a. To do
this, use the -lf2c flag.

If the libf2c.a library is not on the library path, you need to add the path to the mex
process explicitly with the -L command. For example:

mex -L/usr/local/lib/ -lf2c sfun_atmos.c sfun_atmos_sub.o

6-10

 Port Legacy Code

Port Legacy Code

In this section...

“Find the States” on page 6-11
“Sample Times” on page 6-11
“Store Data” on page 6-12
“Use Flints if Needed” on page 6-12
“Considerations for Real Time” on page 6-12

Find the States

If a variable-step solver is being used, it is critical that all continuous states are
identified in the code and put into the C S-function state vector for integration instead of
being integrated by the Fortran code. Likewise, all derivative calculations must be made
available separately to be called from the mdlDerivatives method in the C S-function.
Without these steps, any Fortran code with continuous states will not be compatible with
variable-step solvers if the S-function is registered as a continuous block with continuous
states.

Telltale signs of implicit advancement are incremented variables such as M=M+1 or X=X
+0.05. If the code has many of these constructs and you determine that it is impractical
to recode the source so as not to “ratchet forward,” you might need to try another
approach using fixed-step solvers.

If it is impractical to find all the implicit states and to separate out the derivative
calculations for the Simulink engine, another approach can be used, but you are limited
to using fixed-step solvers. The technique here is to call the Fortran code from the
mdlUpdate method so the Fortran code is only executed once per major simulation
integration step. Any block outputs must be cached in a work vector so that mdlOutputs
can be called as often as needed and output the values from the work vector instead
of calling the Fortran routine again (causing it to inadvertently advance time). See
sfuntmpl_gate_fortran.c for an example that uses DWork vectors. See “How to Use
DWork Vectors” on page 7-7 for details on allocating data-typed work vectors.

Sample Times

If the Fortran code has an implicit step size in its algorithm, coefficients, etc.,
ensure that you register the proper discrete sample time in the C S-function

6-11

6 Creating Fortran S-Functions

mdlInitializeSampleTimes method and only change the block's output values from
the mdlUpdate method.

Store Data

If you plan to have multiple copies of this S-function used in one Simulink model, you
need to allocate storage for each copy of the S-function in the model. The recommended
approach is to use DWork vectors (see “DWork Vector Basics” on page 7-2).

If you plan to have only one copy of the S-function in the model, DWork vectors still
provide the most advanced method for storing data. However, another alternative is to
allocate a block of memory using the malloc command and store the pointer to that
memory in a PWork vector (see “Elementary Work Vectors” on page 7-23). In this
case, you must remember to deallocate the memory using the free command in the S-
function mdlTerminate method.

Use Flints if Needed

Use flints (floating-point ints) to keep track of time. Flints (for IEEE-754 floating-point
numerics) have the useful property of not accumulating roundoff error when adding and
subtracting flints. Using flint variables in DOUBLE PRECISION storage (with integer
values) avoids roundoff error accumulation that would accumulate when floating-point
numbers are added together thousands of times.

DOUBLE PRECISION F

 :

 :

F = F + 1.0

TIME = 0.003 * F

This technique avoids a common pitfall in simulations.

Considerations for Real Time

Since very few Fortran applications are used in a real-time environment, it is common to
come across simulation code that is incompatible with a real-time environment. Common
failures include unbounded (or large) iterations and sporadic but time-intensive side
calculations. You must deal with these directly if you expect to run in real time.

Conversely, it is still perfectly good practice to have iterative or sporadic calculations if
the generated code is not being used for a real-time application.

6-12

7

Using Work Vectors

• “DWork Vector Basics” on page 7-2
• “Types of DWork Vectors” on page 7-5
• “How to Use DWork Vectors” on page 7-7
• “DWork Vector Examples” on page 7-14
• “Elementary Work Vectors” on page 7-23

7 Using Work Vectors

DWork Vector Basics

In this section...

“What is a DWork Vector?” on page 7-2
“Advantages of DWork Vectors” on page 7-2
“DWork Vectors and the Simulink Engine” on page 7-3
“DWork Vectors and the Simulink Coder Product” on page 7-4

What is a DWork Vector?

DWork vectors are blocks of memory that an S-function asks the Simulink engine to
allocate to each instance of the S-function in a model. If multiple instances of your S-
function can occur in a model, your S-function must use DWork vectors instead of global
or static memory to store instance-specific values of S-function variables. Otherwise, your
S-function runs the risk of one instance overwriting data needed by another instance,
causing a simulation to fail or produce incorrect results. The ability to keep track of
multiple instances of an S-function is called reentrancy.

You can create an S-function that is reentrant by using DWork vectors that the engine
manages for each particular instance of the S-function.

Advantages of DWork Vectors

DWork vectors have several advantages:

• Provide instance-specific storage for block variables
• Support floating-point, integer, pointer, and general data types
• Eliminate static and global variables
• Interact directly with the Simulink engine to perform memory allocation,

initialization, and deallocation
• Facilitate inlining the S-function during code generation
• Provide more control over how data appears in the generated code

Note DWork vectors are the most generalized and versatile type of work vector and
the following sections focus on their use. The Simulink product provides additional

7-2

 DWork Vector Basics

elementary types of work vectors that support floating-point, integer, pointer, and mode
data. You can find a discussion of these work vectors in “Elementary Work Vectors” on
page 7-23.

DWork vectors provide the most flexibility for setting data types, names, etc., of the
data in the simulation and during code generation. The following list describes all the
properties that you can set on a DWork vector:

• Data type
• Size
• Numeric type, either real or complex
• Name
• Usage type (see “Types of DWork Vectors” on page 7-5)
• Simulink Coder identifier
• Simulink Coder storage class
• Simulink Coder C type qualifier

See “How to Use DWork Vectors” on page 7-7 for instructions on how to set these
properties. The three Simulink Coder properties pertain only to code generation and have
no effect during simulation.

DWork Vectors and the Simulink Engine

A key advantage of DWork vectors is their connection to the Simulink engine. Over the
course of the simulation, the engine relieves the S-function of all memory management
tasks related to DWork vectors.

To see how this connection is useful, consider an S-function that uses a global variable
to store data. If more than one copy of the S-function exists in a model, each instance of
the S-function must carefully allocate, manipulate, and deallocate each piece of memory
it uses.

In an S-function that uses DWork vectors, the engine, not the S-function, manages the
memory for the DWork vector. At the start of a simulation, the engine allocates the
memory required for each instance of the S-function based on the size and the data type
of the DWork vector contents. At the end of the simulation, the engine automatically
deallocates the memory.

7-3

7 Using Work Vectors

Note You have no control over how the engine allocates memory for DWork
vectors during simulation. When using the Simulink Coder software, you can use
storage classes to customize the memory allocation during code generation. See the
ssSetDWorkRTWStorageClass reference page for more information on using storage
classes.

The engine also performs special tasks based on the type of DWork vector used in the S-
function. For example, it includes DWork vectors that store discrete state information in
the model-wide state vector and makes them available during state logging.

DWork Vectors and the Simulink Coder Product

DWork vectors allow you to customize how data appears in the generated code. When
code is generated, the Simulink Coder code generator includes the DWork vector in
the data structure for the model. The DWork vector controls the field name used in the
structure. DWork vectors also control the storage class and C type qualifier used in the
generated code. See sfun_rtwdwork.c for an example.

7-4

 Types of DWork Vectors

Types of DWork Vectors

All DWork vectors are S-function memory that the Simulink engine manages. The
Simulink software supports four types of DWork vectors:

• General DWork vectors contain information of any data type.
• DState vectors contain discrete state information. Information stored in a DState

vector appears as a state in the linearized model and is available during state logging.
• Scratch vectors contain values that do not need to persist from one time step to the

next.
• Mode vectors contain mode information, usually stored as Boolean or integer data.

S-functions register the DWork vector type using the ssSetDWorkUsageType macro.
This macro accepts one of the four usage types described in the following table.

DWork Usage Type Functionality

General SS_DWORK_USED_AS_DWORK Store instance specific persistent data. General
DWork vectors can also be used to store discrete
state and mode data, however the Simulink engine
will not treat this information specially. You might
choose to use a general DWork vector to store state
information if you want to avoid data logging.

DState SS_DWORK_USED_AS_DSTATE Store discrete state information. Using the DState
vector instead of ssSetNumDiscStates to store
discrete states provides more flexibility for naming
and data typing the states. The engine marks blocks
with discrete states as special during sample time
propagation. In addition, the engine makes the data
stored in the DState vector available during data
logging.

Mode SS_DWORK_USED_AS_MODE Indicate to the Simulink engine that the S-function
contains modes. The engine handles blocks with
modes specially when solving algebraic loops. In
addition, the engine updates an S-function with
modes only at major time steps. DWork mode
vectors are more efficient than standard mode work
vectors (see “Elementary Work Vectors” on page
7-23) because they can store mode information

7-5

7 Using Work Vectors

DWork Usage Type Functionality

as Boolean data. In addition, while an S-function
has only one mode work vectors, it can have multiple
DWork vectors configured to store modes.

Scratch SS_DWORK_USED_AS_SCRATCH Store memory that is not persistent, for example, a
large variable that you do not want to mark on the
stack. Scratch vectors are scoped to a particular S-
function method (for example, mdlOutputs) and
exist across a single time step. Scratch memory can
be shared across S-function blocks. The Simulink
engine attempts to minimize the amount of memory
used by scratch variables and reuses scratch
memory whenever possible.

7-6

 How to Use DWork Vectors

How to Use DWork Vectors

In this section...

“Using DWork Vectors in C MEX S-Functions” on page 7-7
“DWork Vector C MEX Macros” on page 7-10
“Using DWork Vectors in Level-2 MATLAB S-Functions” on page 7-11
“Using DWork Vectors With Legacy Code” on page 7-13

Using DWork Vectors in C MEX S-Functions

The following steps show how to initialize and use DWork vectors in a C MEX S-function.
For a full list of SimStruct macros pertaining to DWork vectors, see “DWork Vector C
MEX Macros” on page 7-10.

1 In mdlInitializeSizes, specify the number of DWork vectors using the
ssSetNumDWork macro. For example, to specify that the S-function contains two
DWork vectors, use the command

ssSetNumDWork(S, 2);

Although the mdlInitializeSizes method tells the Simulink engine how many
DWork vectors the S-function will use, the engine does not allocate memory for the
DWork vectors, at this time.

An S-function can defer specifying the number of DWork vectors until all information
about the S-function inputs is available by passing the value DYNAMICALLY_SIZED
to the ssSetNumDWork macro. If an S-function defers specifying the number of
DWork vectors in mdlInitializeSizes, it must provide a mdlSetWorkWidths
method to set up the DWork vectors.

2 If the S-function does not provide an mdlSetWorkWidths method, the
mdlInitializeSizes method sets any applicable attributes for each DWork vector.
For example, the following lines initialize the widths and data types of the DWork
vectors initialized in the previous step.

ssSetDWorkWidth(S, 0, 2);

ssSetDWorkWidth(S, 1, 1);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

ssSetDWorkDataType(S, 1, SS_BOOLEAN);

7-7

7 Using Work Vectors

The following table lists attributes you can set for a DWork vector and shows an
example of the macro that sets it. See ssSetDWorkRTWStorageClass for a list of
supported storage classes.

Attribute Macro

Data type ssSetDWorkDataType(S, 0, SS_DOUBLE);

Size ssSetDWorkWidth(S, 0, 2);

Name ssSetDWorkName(S, 0, "sfcnState");

Usage type ssSetDWorkUsageType(S, 0,

SS_DWORK_USED_AS_DSTATE);

Numeric type, either real or
complex

ssSetDWorkComplexSignal(S, 0, COMPLEX_NO);

Simulink Coder identifier ssSetDWorkRTWIdentifier(S, 0, "Gain");

Simulink Coder storage class ssSetDWorkRTWStorageClass(S, 0, 2);

Simulink Coder C type qualifier ssSetDWorkRTWTypeQualifier(S, 0, "volatile");

3 In mdlStart, initialize the values of any DWork vectors that should be set only at
the beginning of the simulation. Use the ssGetDWork macro to retrieve a pointer to
each DWork vector and initialize the values. For example, the following mdlStart
method initializes the first DWork vector.
static void mdlStart(SimStruct *S)

{

 real_T *x = (real_T*) ssGetDWork(S,0);

 /* Initialize the first DWork vector */

 x[0] = 0;

 x[1] = 2;

}

The Simulink engine allocates memory for the DWork vector before calling
the mdlStart method. Because the mdlStart method is called only once at
the beginning of the simulation, do not use it for data or states that need to be
reinitialized, for example, when reenabling a disabled subsystem containing the S-
function.

4 In mdlInitializeConditions, initialize the values of any DWork vectors that
need to be reinitialized at certain points in the simulation. The engine executes
mdlInitializeConditions at the beginning of the simulation and any time
an enabled subsystem containing the S-function is reenabled. See the mdlStart

7-8

 How to Use DWork Vectors

example in the previous step for the commands used to initialize DWork vector
values.

5 In mdlOutputs, mdlUpdate, etc., use the ssGetDWork macro to retrieve a pointer
to the DWork vector and use or update the DWork vector values. For example, for a
DWork vector storing two discrete states, the following mdlOutputs and mdlUpdate
methods calculate the output and update the discrete state values.

The S-function previously defined U(element) as (*uPtrs[element]), A, B, C,
and D as the state-space matrices for a discrete state-space system.

/* Function: mdlOutputs ==

 * Abstract:

 * y = Cx + Du

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 if(ssGetDWorkUsageType(S, 0) == SS_DWORK_USED_AS_DSTATE) {

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x = (real_T*) ssGetDWork(S, 0);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* y=Cx+Du */

 y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

 y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

 }

}

#define MDL_UPDATE

/* Function: mdlUpdate ===

 * Abstract:

 * xdot = Ax + Bu

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 real_T tempX[2] = {0.0, 0.0};

 real_T *x = (real_T*) ssGetDWork(S, 0);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* xdot=Ax+Bu */

 tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

 tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

 x[0]=tempX[0];

 x[1]=tempX[1];

}

7-9

7 Using Work Vectors

You do not have to include any code in the mdlTerminate method to deallocate the
memory used to store the DWork vector. Similarly, if you are generating inlined code for
the S-function, you do not have to write an mdlRTW method to access the DWork vector in
the TLC file. The Simulink software handles these aspects of the DWork vector for you.

DWork Vector C MEX Macros

The following table lists the C MEX macros pertaining to DWork vectors.

Macro Description

ssSetNumDWork Specify the number of DWork
vectors.

ssGetNumDWork Query the number of DWork vectors.
ssGetDWork Get a pointer to a specific DWork

vector.
ssGetDWorkComplexSignal Determine if a specific DWork vector

is real or complex.
ssGetDWorkDataType Get the data type of a DWork vector.
ssGetDWorkName Get the name of a DWork vector.
ssGetDWorkRTWIdentifier Get the identifier used to declare a

DWork vector in the generated code.
ssGetDWorkRTWIdentifierMustResolveToSignalObjectIndicate if a DWork vector must

resolve to a Simulink.Signal
object in the MATLAB workspace.

ssGetDWorkRTWStorageClass Get the storage class of a DWork
vector.

ssGetDWorkRTWTypeQualifier Get the C type qualifier used to
declare a DWork vector in the
generated code.

ssGetDWorkUsageType Determine how a DWork vector is
used in the S-function.

ssGetDWorkUsedAsDState Determine if a DWork vector stores
discrete states.

ssGetDWorkWidth Get the size of a DWork vector.

7-10

 How to Use DWork Vectors

Macro Description

ssSetDWorkComplexSignal Specify if the elements of a DWork
vector are real or complex.

ssSetDWorkDataType Specify the data type of a DWork
vector.

ssSetDWorkName Specify the name of a DWork vector.
ssSetDWorkRTWIdentifier Specify the identifier used to declare

a DWork vector in the generated
code.

ssSetDWorkRTWIdentifierMustResolveToSignalObjectSpecify if a DWork vector must
resolve to a Simulink.Signal
object.

ssSetDWorkRTWStorageClass Specify the storage class for a
DWork vector.

ssSetDWorkRTWTypeQualifier Specify the C type qualifier used
to declare a DWork vector in the
generated code.

ssSetDWorkUsageType Specify how a DWork vector is used
in the S-function.

ssSetDWorkUsedAsDState Specify that a DWork vector stores
discrete state values.

ssSetDWorkWidth Specify the width of a DWork vector.

Using DWork Vectors in Level-2 MATLAB S-Functions

The following steps show how to initialize and use DWork vectors in Level-2 MATLAB S-
functions. These steps use the S-function msfcn_unit_delay.m.

1 In the PostPropagationSetup method, initialize the number of DWork
vectors and the attributes of each vector. For example, the following
PostPropagationSetup callback method configures one DWork vector used to
store a discrete state.

function PostPropagationSetup(block)

 %% Setup Dwork

7-11

7 Using Work Vectors

 block.NumDworks = 1;

 block.Dwork(1).Name = 'x0';

 block.Dwork(1).Dimensions = 1;

 block.Dwork(1).DatatypeID = 0;

 block.Dwork(1).Complexity = 'Real';

 block.Dwork(1).UsedAsDiscState = true;

The reference pages for Simulink.BlockCompDworkData and the parent class
Simulink.BlockData list the properties you can set for Level-2 MATLAB S-
function DWork vectors.

2 Initialize the DWork vector values in either the Start or InitializeConditions
methods. Use the Start method for values that are initialized only at the beginning
of the simulation. Use the InitializeConditions method for values that need
to be reinitialized whenever a disabled subsystem containing the S-function is
reenabled.

For example, the following InitializeConditions method initializes the value of
the DWork vector configured in the previous step to the value of the first S-function
dialog parameter.

function InitializeConditions(block)

 %% Initialize Dwork

 block.Dwork(1).Data = block.DialogPrm(1).Data;

3 In the Outputs, Update, etc. methods, use or update the DWork vector values,
as needed. For example, the following Outputs method sets the S-function output
equal to the value stored in the DWork vector. The Update method then changes the
DWork vector value to the current value of the first S-function input port.

%% Outputs callback method

function Outputs(block)

 block.OutputPort(1).Data = block.Dwork(1).Data;

%% Update callback method

function Update(block)

 block.Dwork(1).Data = block.InputPort(1).Data;

7-12

 How to Use DWork Vectors

Note Level-2 MATLAB S-functions do not support MATLAB sparse matrices. Therefore,
you cannot assign a sparse matrix to the value of a DWork vector. For example, the
following line of code produces an error

block.Dwork(1).Data = speye(10);

where the speye command produces a sparse identity matrix.

Using DWork Vectors With Legacy Code

You can use DWork vectors to communicate with legacy code. If you have existing code
that allocates data structures in memory, store a pointer to those data structures in
a DWork vector. Your S-function can then communicate with the legacy code via the
pointer. Alternatively, for simplicity in setting up your S-function, you can use a pointer
work vector to store the pointer. See “Elementary Work Vectors” on page 7-23 for a
description of pointer work vectors.

You can also use DWork vectors to store the state of legacy code. The template file
sfuntmpl_gate_fortran.c shows how to use DWork vectors to interact with legacy
Fortran code. The Legacy Code Tool uses DWork vectors to maintain the states of legacy
C or C++ code incorporated through the tool. See “Integrate C Functions Using Legacy
Code Tool” on page 4-43 for more information on the Legacy Code Tool.

7-13

7 Using Work Vectors

DWork Vector Examples

In this section...

“General DWork Vector” on page 7-14
“DWork Scratch Vector” on page 7-16
“DState Work Vector” on page 7-17
“DWork Mode Vector” on page 7-19
“Level-2 MATLAB S-Function DWork Vector” on page 7-21

General DWork Vector

The S-function sfun_rtwdwork.c shows how to configure a DWork vector for use with
the Simulink Coder product. The Simulink model sfcndemo_sfun_rtwdwork uses this
S-function to implement a simple accumulator.

The following portion of the mdlInitializeSizes method initializes the DWork vector
and all code generation properties associated with it.
ssSetNumDWork(S, 1);

ssSetDWorkWidth(S, 0, 1);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

/* Identifier; free any old setting and update */

id = ssGetDWorkRTWIdentifier(S, 0);

if (id != NULL) {

 free(id);

}

id = malloc(80);

mxGetString(ID_PARAM(S), id, 80);

ssSetDWorkRTWIdentifier(S, 0, id);

/* Type Qualifier; free any old setting and update */

tq = ssGetDWorkRTWTypeQualifier(S, 0);

if (tq != NULL) {

 free(tq);

}

tq = malloc(80);

mxGetString(TQ_PARAM(S), tq, 80);

ssSetDWorkRTWTypeQualifier(S, 0, tq);

/* Storage class */

sc = ((int_T) *((real_T*) mxGetPr(SC_PARAM(S)))) - 1;

ssSetDWorkRTWStorageClass(S, 0, sc);

The S-function initializes the DWork vector in mdlInitializeConditions.

7-14

 DWork Vector Examples

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ============================

 * Abstract:

 * Initialize both continuous states to zero

 */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *x = (real_T*) ssGetDWork(S,0);

 /* Initialize the dwork to 0 */

 x[0] = 0.0;

}

The mdlOutputs method assigns the DWork vector value to the S-function output.

/* Function: mdlOutputs ==

 * Abstract:

 * y = x

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x = (real_T*) ssGetDWork(S,0);

 /* Return the current state as the output */

 y[0] = x[0];

}

The mdlUpdate method increments the DWork value by the input.

#define MDL_UPDATE

/* Function: mdlUpdate ==

 * Abstract:

 * This function is called once for every major integration

 * time step. Discrete states are typically updated here, but

 * this function is useful for performing any tasks that should

 * only take place once per integration step.

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 real_T *x = (real_T*) ssGetDWork(S,0);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /*

 * Increment the state by the input

 * U is defined as U(element) (*uPtrs[element])

 */

 x[0] += U(0);

}

7-15

7 Using Work Vectors

DWork Scratch Vector

The following example uses a scratch DWork vector to store a static variable value. The
mdlInitializeSizes method configures the width and data type of the DWork vector.
The ssSetDWorkUsageType macro then specifies the DWork vector is a scratch vector.
ssSetNumDWork(S, 1);

ssSetDWorkWidth(S, 0, 1);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

ssSetDWorkUsageType(S,0, SS_DWORK_USED_AS_SCRATCH);

The remainder of the S-function uses the scratch DWork vector exactly as it would any
other type of DWork vector. The InitializeConditions method sets the initial value
and the mdlOutputs method uses the value stored in the DWork vector.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ================================ */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *x = (real_T*) ssGetDWork(S,0);

 /* Initialize the dwork to 0 */

 x[0] = 0.0;

}

/* Function: mdlOutputs === */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x1 = (real_T*) ssGetDWork(S,1);

 x[0] = 2000;

 y[0] = x[0] * 2;

}

If you have Simulink Coder, the Simulink Coder software handles scratch DWork
differently from other DWork vectors when generating code for inlined S-function.
To inline the S-function, create the following Target Language Compiler (TLC) file to
describe the mdlOutputs method.
%implements sfun_dscratch "C"

%% Function: Outputs ==

%%

/* dscratch Block: %<Name> */

%<LibBlockDWork(DWork[0], "", "", 0)> = 2000.0;

%<LibBlockOutputSignal(0,"","",0)> = %<LibBlockDWork(DWork[0],"","", 0)> * 2;

When the Simulink Coder software generates code for the model, it inlines the S-function
and declares the second DWork vector as a local scratch vector. For example, the model
outputs function contains the following lines:

7-16

 DWork Vector Examples

/* local scratch DWork variables */

real_T SFunction_DWORK1;

SFunction_DWORK1 = 2000.0;

If the S-function used a general DWork vector instead of a scratch DWork vector,
generating code with the same TLC file would have resulted in the DWork vector being
included in the data structure, as follows:

sfcndemo_dscratch_DWork.SFunction_DWORK1 = 2000.0;

DState Work Vector

This example rewrites the S-function example dsfunc.c to use a DState vector instead
of an explicit discrete state vector. The mdlInitializeSizes macro initializes the
number of discrete states as zero and, instead, initializes one DWork vector.

The mdlInitializeSizes method then configures the DWork vector as a DState
vector using a call to ssSetDWorkUsedAsDState. This is equivalent to calling the
ssSetDWorkUsageType macro with the value SS_DWORK_USED_AS_DSTATE. The
mdlInitializeSizes method sets the width and data type of the DState vector and
gives the state a name using ssSetDWorkName.

Note DWork vectors configured as DState vectors must be assigned a name
for the Simulink engine to register the vector as discrete states. The function
Simulink.BlockDiagram.getInitialStates(mdl) returns the assigned name in
the label field for the initial states.

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine */

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 2);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, 2);

7-17

7 Using Work Vectors

 ssSetNumSampleTimes(S, 1);

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 ssSetNumDWork(S, 1);

 ssSetDWorkUsedAsDState(S, 0, SS_DWORK_USED_AS_DSTATE);

 ssSetDWorkWidth(S, 0, 2);

 ssSetDWorkDataType(S, 0, SS_DOUBLE);

 ssSetDWorkName(S, 0, "SfunStates");

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The mdlInitializeConditions method initializes the DState vector values using the
pointer returned by ssGetDWork.

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ===============================

 * Abstract:

 * Initialize both discrete states to one.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *x0 = (real_T*) ssGetDWork(S, 0);

 int_T lp;

 for (lp=0;lp<2;lp++) {

 *x0++=1.0;

 }

}

The mdlOutputs method then uses the values stored in the DState vector to compute the
output of the discrete state-space equation.

/* Function: mdlOutputs ==

 * Abstract:

 * y = Cx + Du

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x = (real_T*) ssGetDWork(S, 0);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* y=Cx+Du */

 y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

 y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

7-18

 DWork Vector Examples

Finally, the mdlUpdate method updates the DState vector with new values for the
discrete states.
#define MDL_UPDATE

/* Function: mdlUpdate ==

 * Abstract:

 * xdot = Ax + Bu

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 real_T tempX[2] = {0.0, 0.0};

 real_T *x = (real_T*) ssGetDWork(S, 0);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* xdot=Ax+Bu */

 tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

 tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

 x[0]=tempX[0];

 x[1]=tempX[1];

}

DWork Mode Vector

This example rewrites the S-function sfun_zc.c to use a DWork mode vector instead of
an explicit mode work vector (see “Elementary Work Vectors” on page 7-23 for more
information on mode work vectors). This S-function implements an absolute value block.

The mdlInitializeSizes method sets the number of DWork vectors and zero-
crossing vectors (see “Zero Crossings” on page 8-45) to DYNAMICALLY_SIZED. The
DYNAMICALLY_SIZED setting allows the Simulink engine to defer specifying the work
vector sizes until it knows the dimensions of the input, allowing the S-function to support
an input with an arbitrary width.
static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine */

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;

7-19

7 Using Work Vectors

 ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetNumSampleTimes(S, 1);

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 ssSetNumDWork(S, 1);

 ssSetNumModes(S, 0);

 /* Initializes the zero-crossing and DWork vectors */

 ssSetDWorkWidth(S,0,DYNAMICALLY_SIZED);

 ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The Simulink engine initializes the number of zero-crossing vectors and DWork vectors
to the number of elements in the signal coming into the first S-function input port. The
engine then calls the mdlSetWorkWidths method, which uses ssGetNumDWork to
determine how many DWork vectors were initialized and then sets the properties for
each DWork vector.
#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S) {

 int_T numdw = ssGetNumDWork(S);

 int_T i;

 for (i = 0; i < numdw; i++) {

 ssSetDWorkUsageType(S, i, SS_DWORK_USED_AS_MODE);

 ssSetDWorkDataType(S, i, SS_BOOLEAN);

 ssSetDWorkComplexSignal(S, i, COMPLEX_NO);

 }

}

The mdlOutputs method uses the value stored in the DWork mode vector to determine
if the output signal should be equal to the input signal or the absolute value of the input
signal.
static void mdlOutputs(SimStruct *S, int_T tid)

{

 int_T i;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 int_T width = ssGetOutputPortWidth(S,0);

 boolean_T *mode = ssGetDWork(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 if (ssIsMajorTimeStep(S)) {

 for (i = 0; i < width; i++) {

 mode[i] = (boolean_T)(*uPtrs[i] >= 0.0);

 }

7-20

 DWork Vector Examples

 }

 for (i = 0; i < width; i++) {

 y[i] = mode[i]? (*uPtrs[i]): -(*uPtrs[i]);

 }

}

Level-2 MATLAB S-Function DWork Vector

The example S-function msfcn_varpulse.m models a variable width pulse generator.
The S-function uses two DWork vectors. The first DWork vector stores the pulse width
value, which is modified at every major time step in the Update method. The second
DWork vector stores the handle of the pulse generator block in the Simulink model. The
value of this DWork vector does not change over the course of the simulation.

The PostPropagationSetup method, called DoPostPropSetup in this S-function, sets
up the two DWork vectors.
function DoPostPropSetup(block)

% Initialize the Dwork vector

block.NumDworks = 2;

% Dwork(1) stores the value of the next pulse width

block.Dwork(1).Name = 'x1';

block.Dwork(1).Dimensions = 1;

block.Dwork(1).DatatypeID = 0; % double

block.Dwork(1).Complexity = 'Real'; % real

block.Dwork(1).UsedAsDiscState = true;

% Dwork(2) stores the handle of the Pulse Geneator block

block.Dwork(2).Name = 'BlockHandle';

block.Dwork(2).Dimensions = 1;

block.Dwork(2).DatatypeID = 0; % double

block.Dwork(2).Complexity = 'Real'; % real

block.Dwork(2).UsedAsDiscState = false;

The Start method initializes the DWork vector values.
function Start(block)

% Populate the Dwork vector

block.Dwork(1).Data = 0;

% Obtain the Pulse Generator block handle

pulseGen = find_system(gcs,'BlockType','DiscretePulseGenerator');

blockH = get_param(pulseGen{1},'Handle');

block.Dwork(2).Data = blockH;

The Outputs method uses the handle stored in the second DWork vector to update the
pulse width of the Pulse Generator block.

7-21

7 Using Work Vectors

function Outputs(block)

% Update the pulse width value

set_param(block.Dwork(2).Data, 'PulseWidth', num2str(block.InputPort(1).data));

The Update method then modifies the first DWork vector with the next value for the
pulse width, specified by the input signal to the S-Function block.
function Update(block)

% Store the input value in the Dwork(1)

block.Dwork(1).Data = block.InputPort(1).Data;

%endfunction

7-22

 Elementary Work Vectors

Elementary Work Vectors

In this section...

“Description of Elementary Work Vector” on page 7-23
“Relationship to DWork Vectors” on page 7-23
“Using Elementary Work Vectors” on page 7-24
“Additional Work Vector Macros” on page 7-25
“Elementary Work Vector Examples” on page 7-26

Description of Elementary Work Vector

In addition to DWork vectors, the Simulink software provides a simplified set of work
vectors. In some S-functions, these elementary work vectors can provide an easier
solution than using DWork vectors:

• IWork vectors store integer data.
• Mode vectors model zero crossings or other features that require a single mode

vector.
• PWork vectors store pointers to data structures, such as those that interface the S-

function to legacy code, another software application, or a hardware application.
• RWork vectors store floating-point (real) data.

Relationship to DWork Vectors

The following table compares each type of work vector to a DWork vector.

Work Vector
Type

Comparison to DWork Vector How to create equivalent DWork vector

IWork IWork vectors cannot be
customized in the generated
code. Also, you are allowed only
one IWork vector.

ssSetNumDWork(S,1);

ssSetDWorkDataType(S, 0, SS_INT8);

Mode Mode vectors require more
memory than DWork vectors
since the mode vector is always

ssSetNumDWork(S,1);

ssSetDWorkUsageType(S, 0,

 sSS_DWORK_USED_AS_MODE);

7-23

7 Using Work Vectors

Work Vector
Type

Comparison to DWork Vector How to create equivalent DWork vector

stored with an integer data
type. Also, you are allowed only
one Mode vector.

ssSetDWorkDataType(S, 0, SS_INT8);

PWork Unlike DWork vectors, PWork
vectors cannot be named in the
generated code. Also, you are
allowed only one PWork vector.

ssSetNumDWork(S,1);

ssSetDWorkDataType(S, 0, SS_POINTER);

The DWork vector then stores a pointer.

RWork RWork vectors cannot be
customized in the generated
code. Also, you are allowed only
one RWork vector.

ssSetNumDWork(S,1);

ssSetDWorkDataType(S, 0, SS_DOUBLE);

Using Elementary Work Vectors

The process for using elementary work vectors is similar to that for DWork vectors (see
“Using DWork Vectors in C MEX S-Functions” on page 7-7.) The elementary work vectors
have fewer properties, so the initialization process is simpler. However, if you need to
generate code for the S-function, the S-function becomes more involved than when using
DWork vectors.

The following steps show how to set up and use elementary work vectors. See “Additional
Work Vector Macros” on page 7-25 for a list of macros related to each step in the
following process.

1 In mdlInitializeSizes, specify the size of the work vectors using the
ssSetNumXWork macro, for example:

ssSetNumPWork(2);

This macro indicates how many elements the work vector contains, however, the
Simulink engine does not allocate memory, at this time.

An S-function can defer specifying the length of the work vectors until all
information about the S-function inputs is available by passing the value
DYNAMICALLY_SIZED to the ssSetNumXWork macro. If an S-function defers
specifying the length of the work vectors in mdlInitializeSizes, it must provide
a mdlSetWorkWidths method to set up the work vectors.

7-24

 Elementary Work Vectors

Note If an S-function uses mdlSetWorkWidths, all work vectors used in the S-
function must be set to DYNAMICALLY_SIZED in mdlInitializeSizes, even if the
exact value is known before mdlInitializeSizes is called. The sizes to be used by
the S-function are than specified in mdlSetWorkWidths.

For an example, see sfun_dynsize.c.
2 In mdlStart, assign values to the work vectors that are initialized only at the start

of the simulation. Use the ssGetXWork macro to retrieve a pointer to each work
vector and use the pointer to initialize the work vector values. Alternatively, use the
ssGetXWorkValues to assign values to particular elements of the work vector.

The Simulink engine calls the mdlStart method once at the beginning of the
simulation. Before calling this method, the engine allocates memory for the work
vectors. Do not use the mdlStart method for data that needs to be reinitialized over
the course of the simulation, for example, data that needs to be reinitialized when an
enabled subsystem containing the S-function is enabled.

3 In mdlInitializeConditions, initialize the values of any work vectors that might
need to be reinitialized at certain points in the simulation. The engine executes
mdlInitializeConditions at the beginning of the simulation and any time an
enabled subsystem containing the S-function is reenabled.

4 In mdlOutputs, mdlUpdate, etc., use the ssGetXWork macro to retrieve a pointer
to the work vector and use the pointer to access or update the work vector values.

5 Write an mdlRTW method to allow the Target Language Compiler (TLC) to
access the work vector. This step is not necessary if the S-function uses DWork
vectors. For information on writing parameter data in an mdlRTW method, see
ssWriteRTWParamSettings. For more information on generating code using
an mdlRTW method, see “Write Fully Inlined S-Functions with mdlRTW Routine”
(Simulink Coder).

Additional Work Vector Macros

Macro Description

ssSetNumRWork Specify the width of the real work vector.
ssGetNumRWork Query the width of the real work vector.
ssSetNumIWork Specify the width of the integer work vector.

7-25

7 Using Work Vectors

Macro Description

ssGetNumIWork Query the width of the integer work vector.
ssSetNumPWork Specify the width of the pointer work vector.
ssGetNumPWork Query the width of the pointer work vector.
ssSetNumModes Specify the width of the mode work vector.
ssGetNumModes Query the width of the mode work vector.
ssGetIWork Get a pointer to the integer work vector.
ssGetIWorkValue Get an element of the integer work vector.
ssGetModeVector Get a pointer to the mode work vector.
ssGetModeVectorValue Get an element of the mode work vector.
ssGetPWork Get a pointer to the pointer work vector.
ssGetPworkValue Get one element from the pointer work vector.
ssGetRWork Get a pointer to the floating-point work vector.
ssGetRWorkValue Get an element of the floating-point work vector.
ssSetIWorkValue Set the value of one element of the integer work vector.
ssSetModeVectorValue Set the value of one element of the mode work vector.
ssSetPWorkValue Set the value of one element of the pointer work vector.
ssSetRWorkValue Set the value of one element of the floating-point work

vector.

Elementary Work Vector Examples

The following sections provide examples of the four types of elementary work vectors.

Pointer Work Vector

This example opens a file and stores the FILE pointer in the pointer work vector.

The following statement, included in the mdlInitializeSizes function, indicates that
the pointer work vector is to contain one element.

ssSetNumPWork(S, 1) /* pointer-work vector */

7-26

 Elementary Work Vectors

The following code uses the pointer work vector to store a FILE pointer, returned from
the standard I/O function fopen.
#define MDL_START /* Change to #undef to remove function. */

#if defined(MDL_START)

static void mdlStart(real_T *x0, SimStruct *S)

{

 FILE *fPtr;

 void **PWork = ssGetPWork(S);

 fPtr = fopen("file.data", "r");

 PWork[0] = fPtr;

}

#endif /* MDL_START */

The following code retrieves the FILE pointer from the pointer work vector and passes it
to fclose in order to close the file.
static void mdlTerminate(SimStruct *S)

{

 if (ssGetPWork(S) != NULL) {

 FILE *fPtr;

 fPtr = (FILE *) ssGetPWorkValue(S,0);

 if (fPtr != NULL) {

 fclose(fPtr);

 }

 ssSetPWorkValue(S,0,NULL);

 }

}

Note Although the Simulink engine handles deallocating the PWork vector, the
mdlTerminate method must always free the memory stored in the PWork vector.

Real and Integer Work Vectors

The S-function stvctf.c uses RWork and IWork vectors to model a time-varying
continuous transfer function. For a description of this S-function, see the example
“Discontinuities in Continuous States” on page 8-106.

Mode Vector

The following example implements a switch block using a mode work vector. The
mdlInitializeSizes method configures two input ports with direct feedthrough and
one output port. The mode vector element indicates if the signal from the first or second
input port is propagated to the output. The S-function uses one S-function parameter and
a corresponding run-time parameter to store the mode value and allow the switch to be
toggled during simulation.

7-27

7 Using Work Vectors

static void mdlInitializeSizes(SimStruct *S)

{

 /* Initialize one S-function parameter to toggle the mode value */

 ssSetNumSFcnParams(S, 1);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 /* Return if number of expected != number of actual parameters */

 return;

 }

 {

 int iParam = 0;

 int nParam = ssGetNumSFcnParams(S);

 for (iParam = 0; iParam < nParam; iParam++)

 {

 ssSetSFcnParamTunable(S, iParam, SS_PRM_TUNABLE);

 }

 }

 /* Initialize two input ports with direct feedthrough */

 if (!ssSetNumInputPorts(S, 2)) return;

 ssSetInputPortWidth(S, 0, 1);

 ssSetInputPortWidth(S, 1, 1);

 ssSetInputPortDataType(S, 0, SS_DOUBLE);

 ssSetInputPortDataType(S, 1, SS_DOUBLE);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 ssSetInputPortDirectFeedThrough(S, 1, 1);

 /* Initialize one output port */

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, 1);

 ssSetOutputPortDataType(S, 0, SS_DOUBLE);

 /* Initialize one element in the mode vector */

 ssSetNumSampleTimes(S, 1);

 ssSetNumModes(S,1);

 ssSetOptions(S,

 SS_OPTION_WORKS_WITH_CODE_REUSE |

 SS_OPTION_USE_TLC_WITH_ACCELERATOR |

 SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |

 SS_OPTION_NONVOLATILE);

}

The mdlInitializeConditions method initializes the mode vector value using the
current value of the S-function dialog parameter.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions =============================

 * Abstract:

 * Initialize the mode vector value.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 int_T *mv = ssGetModeVector(S);

 real_T param = mxGetScalar(ssGetSFcnParam(S,0));

7-28

 Elementary Work Vectors

 mv[0] = (int_T)param;

}

The mdlProcessParameters and mdlSetWorkWidths methods initialize and update
the run-time parameter. As the simulation runs, changes to the S-function dialog
parameter are mapped to the run-time parameter.
/* Function: mdlSetWorkWidths ===

 * Abstract:

 * Sets the number of runtime parameters.

 */

#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S) {

 ssSetNumRunTimeParams(S,1);

 ssRegDlgParamAsRunTimeParam(S,0,0,"P1",SS_INT16);

}

/* Function: mdlProcessParameters ===

 * Abstract:

 * Update run-time parameters.

 */

#define MDL_PROCESS_PARAMETERS

static void mdlProcessParameters(SimStruct *S)

{

 ssUpdateDlgParamAsRunTimeParam(S,0);

}

The mdlOutputs method updates the mode vector value with the new run-time
parameter value at every major time step. It then uses the mode vector value to
determine which input signal to pass through to the output.
static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 InputRealPtrsType u2Ptrs = ssGetInputPortRealSignalPtrs(S,1);

 real_T *y = ssGetOutputPortSignal(S,0);

 int_T *mode = ssGetModeVector(S);

 real_T param = mxGetScalar(ssGetSFcnParam(S,0));

 if (ssIsMajorTimeStep(S)) {

 mode[0] = (int_T)param;

 }

 if (!mode[0]) {

 /* first input */

 y[0] = (*uPtrs[0]);

 }

 if (mode[0]) {

 /* second input */

 y[0] = (*u2Ptrs[0]);

 }

}

7-29

8

Implementing Block Features

• “Dialog Parameters” on page 8-2
• “Run-Time Parameters” on page 8-7
• “Input and Output Ports” on page 8-16
• “Custom Data Types” on page 8-25
• “Sample Times” on page 8-29
• “Zero Crossings” on page 8-45
• “S-Function Compliance with the SimState” on page 8-48
• “Matrices in C S-Functions” on page 8-51
• “Function-Call Subsystems and S-Functions” on page 8-53
• “Sim Viewing Devices in External Mode” on page 8-58
• “Error Handling” on page 8-59
• “C MEX S-Function Examples” on page 8-63

8 Implementing Block Features

Dialog Parameters

In this section...

“About Dialog Parameters” on page 8-2
“Tunable Parameters” on page 8-4

About Dialog Parameters

You can pass parameters to an S-function at the start of and during the simulation, using
the S-function parameters field of the Block Parameters dialog box. Such parameters
are called dialog box parameters to distinguish them from run-time parameters created
by the S-function to facilitate code generation (see “Run-Time Parameters” on page
8-7).

Note You cannot use the Model Explorer, the S-function Block Parameters dialog box,
or a mask to tune the parameters of a source S-function, i.e., an S-function that has
outputs but no inputs, while a simulation is running. For more information, see “Tune
and Experiment with Block Parameter Values”.

Using C S-Function Dialog Parameters

The Simulink engine stores the values of the dialog box parameters in the S-function
SimStruct structure. Use the S-function callback methods and SimStruct macros to
access and check the parameters and use them to compute the S-function output. To use
dialog parameters in your C S-function, perform the following steps when you create the
S-function:

1 Determine the order in which the parameters are to be specified in the block's dialog
box.

2 In the mdlInitializeSizes function, use the ssSetNumSFcnParams macro
to tell the Simulink engine how many parameters the S-function accepts.
Specify S as the first argument and the number of dialog box parameters as the
second argument. If your S-function implements the mdlCheckParameters
method, the mdlInitializeSizes routine should call mdlCheckParameters
to check the validity of the initial values of the parameters. For example, the
mdlInitializeSizes function in sfun_runtime1.c begins with the following
code.

8-2

 Dialog Parameters

ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL) {

 return;

 }

 } else {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

#endif

3 Access the dialog box parameters in the S-function using the ssGetSFcnParam
macro.

Specify S as the first argument and the relative position of the parameter in the
list entered on the dialog box (0 is the first position) as the second argument.
The ssGetSFcnParam macro returns a pointer to the mxArray containing the
parameter. You can use ssGetDTypeIdFromMxArray to get the data type of the
parameter. Alternatively, you can use ssGetSFcnParamDataType to get the data
type of the parameter by specifying the index of the parameter.

For example, in sfun_runtime1.c, the following #define statements at the
beginning of the S-function specify the order of three dialog box parameters and
access their values on the block's dialog.

#define SIGNS_IDX 0

#define SIGNS_PARAM(S) ssGetSFcnParam(S,SIGNS_IDX) /* First parameter */

#define GAIN_IDX 1

#define GAIN_PARAM(S) ssGetSFcnParam(S,GAIN_IDX) /* Second parameter */

#define OUT_IDX 2

#define OUT_PARAM(S) ssGetSFcnParam(S,OUT_IDX) /* Third parameter */

When running a simulation, you must specify the parameters in the S-Function
parameters field of the S-Function Block Parameters dialog box in the same order that
you defined them in step 1. You can enter any valid MATLAB expression as the value of
a parameter, including literal values, names of workspace variables, function invocations,
or arithmetic expressions. The Simulink engine evaluates the expression and passes its
value to the S-function.

As another example, the following code is part of a device driver S-function. Four input
parameters are used: BASE_ADDRESS_PRM, GAIN_RANGE_PRM, PROG_GAIN_PRM, and
NUM_OF_CHANNELS_PRM. The code uses #define statements at the top of the S-function
to associate particular input arguments with the parameter names.

8-3

8 Implementing Block Features

/* Input Parameters */

#define BASE_ADDRESS_PRM(S) ssGetSFcnParam(S, 0)

#define GAIN_RANGE_PRM(S) ssGetSFcnParam(S, 1)

#define PROG_GAIN_PRM(S) ssGetSFcnParam(S, 2)

#define NUM_OF_CHANNELS_PRM(S) ssGetSFcnParam(S, 3)

When running the simulation, enter four variable names or values in the S-function
parameters field of the S-Function Block Parameters dialog box. The first corresponds
to the first expected parameter, BASE_ADDRESS_PRM(S). The second corresponds to the
next expected parameter, and so on.

The mdlInitializeSizes function contains this statement.

ssSetNumSFcnParams(S, 4);

Using Level-2 MATLAB S-Function Dialog Parameters

The Simulink engine stores Level-2 MATLAB S-function dialog parameters in the block
run-time object. To use dialog parameters in a Level-2 MATLAB S-function, perform the
following steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the block's dialog
box.

2 In the setup method, set the run-time object's NumDialogPrms property to indicate
to the engine how many parameters the S-function accepts, for example:

block.NumDialogPrms = 2;

3 Access the dialog box parameters in the S-function using the run-time object's
DialogPrm method. The dialog parameter's Data property stores its current value,
for example:

param1 = block.DialogPrm(1).Data;

param2 = block.DialogPrm(2).Data;

When running a simulation, you must specify the parameters in the Parameters field of
the Level-2 MATLAB S-Function Block Parameters dialog box in the same order that you
defined them in step 1.

Tunable Parameters

Dialog parameters can be either tunable or nontunable. A tunable parameter is a
parameter that a user can change while the simulation is running.

8-4

 Dialog Parameters

Note Dialog box parameters are tunable by default. Nevertheless, it is good
programming practice to set the tunability of every parameter, even those that are
tunable. If you enable the simulation diagnostic S-function upgrades needed, the
Simulink engine issues the diagnostic whenever it encounters an S-function that fails to
specify the tunability of all its parameters.

The mdlCheckParameters method enables you to validate changes to tunable
parameters during a simulation. The engine invokes the mdlCheckParameters method
whenever you change the values of parameters during the simulation loop. This method
should check the S-function dialog box parameters to ensure that the changes are valid.

The optional mdlProcessParameters callback method allows an S-function to process
changes to tunable parameters. The engine invokes this method only if valid parameter
changes have occurred in the previous time step. A typical use of this method is to
perform computations that depend only on the values of parameters and hence need to
be computed only when parameter values change. The method can cache the results of
the parameter computations in work vectors or, preferably, as run-time parameters (see
“Run-Time Parameters” on page 8-7).

Using Tunable Parameters in a C S-Function

In a C S-function, use the macro ssSetSFcnParamTunable in mdlInitializeSizes
to specify the tunability of each S-function dialog box parameter. The code below is
taken from the mdlInitializeSizes function in the example sfun_runtime1.c. The
code first sets the number of S-function dialog box parameters to three before invoking
mdlCheckParameters. If the parameter check passes, the tunability of the three S-
function dialog box parameters is specified.
 ssSetNumSFcnParams(S, 3); /* Three dialog box parameters*/

 #if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL) {

 return;

 }

 } else {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

 #endif

 ssSetSFcnParamTunable(S,GAIN_IDX,true); /* Tunable */

 ssSetSFcnParamTunable(S,SIGNS_IDX,false); /* Not tunable */

 ssSetSFcnParamTunable(S,OUT_IDX,false); /* Not tunable */

8-5

8 Implementing Block Features

Note The S-function mdlInitializeSizes routine invokes the mdlCheckParameters
method to ensure that the initial values of the parameters are valid.

Using Tunable Parameters in a Level-2 MATLAB S-Function

In a Level-2 MATLAB S-function, set the run-time object DialogPrmsTunable property
in the setup method to specify the tunability of each S-function dialog box parameter.
For example, the following line sets the first parameter of an S-function with three dialog
parameters to tunable, and the second and third parameters to nontunable.

block.DialogPrmsTunable = {'Tunable','Nontunable','Nontunable'};

Tuning Parameters in External Mode

When you tune parameters during simulation, the Simulink engine invokes the S-
function mdlCheckParameters method to validate the changes and then the S-
functions' mdlProcessParameters method to give the S-function a chance to process
the parameters in some way. The engine also invokes these methods when running in
external mode, but it passes the unprocessed changes to the S-function target. Thus,
if it is essential that your S-function process parameter changes, you need to create a
Target Language Compiler (TLC) file that inlines the S-function, including its parameter
processing code, during the code generation process. For information on inlining S-
functions, see “Inlining S-Functions” in the Simulink Coder Target Language Compiler
documentation.

See Also
ssGetSFcnParamDataType

8-6

 Run-Time Parameters

Run-Time Parameters

In this section...

“About Run-Time Parameters” on page 8-7
“Creating Run-Time Parameters” on page 8-8
“Updating Run-Time Parameters” on page 8-12
“Tuning Run-Time Parameters” on page 8-14
“Accessing Run-Time Parameters” on page 8-14

About Run-Time Parameters

You can create internal representations of external S-function dialog box parameters
called run-time parameters. Every run-time parameter corresponds to one or more
dialog box parameters and can have the same value and data type as its corresponding
external parameters or a different value or data type. If a run-time parameter differs
in value or data type from its external counterpart, the dialog parameter is said to have
been transformed to create the run-time parameter. The value of a run-time parameter
that corresponds to multiple dialog parameters is typically a function of the values of
the dialog parameters. The Simulink engine allocates and frees storage for run-time
parameters and provides functions for updating and accessing them, thus eliminating the
need for S-functions to perform these tasks.

Run-time parameters facilitate the following kinds of S-function operations:

• Computed parameters

Often the output of a block is a function of the values of several dialog parameters.
For example, suppose a block has two parameters, the volume and density of some
object, and the output of the block is a function of the input signal and the mass of the
object. In this case, the mass can be viewed as a third internal parameter computed
from the two external parameters, volume and density. An S-function can create
a run-time parameter corresponding to the computed weight, thereby eliminating
the need to provide special case handling for weight in the output computation. See
“Creating Run-Time Parameters from Multiple S-Function Parameters” on page
8-10 for more information.

• Data type conversions

8-7

8 Implementing Block Features

Often a block needs to change the data type of a dialog parameter to facilitate internal
processing. For example, suppose that the output of the block is a function of the
input and a dialog parameter and the input and dialog parameter are of different data
types. In this case, the S-function can create a run-time parameter that has the same
value as the dialog parameter but has the data type of the input signal, and use the
run-time parameter in the computation of the output.

• Code generation

During code generation, the Simulink Coder product writes all run-time parameters
automatically to the model.rtw file, eliminating the need for the S-function to
perform this task via an mdlRTW method.

The sfcndemo_runtime Simulink model contains four example S-functions that create
run-time parameters.

Creating Run-Time Parameters

In a Level-2 MATLAB S-function, you create run-time parameters associated with
all the tunable dialog parameters. Use the run-time object's AutoRegRuntimePrms
method in the PostPropagationSetup callback method to register the block's run-time
parameters. For example:

block.AutoRegRuntimePrms;

In a C S-function, you can create run-time parameters in a number of ways. The
following sections describe different methods for creating run-time parameters in a C S-
function.

Creating Run-Time Parameters All at Once

Use the SimStruct function ssRegAllTunableParamsAsRunTimeParams in
mdlSetWorkWidths to create run-time parameters corresponding to all tunable
parameters. This function requires that you pass it an array of names, one for each run-
time parameter. The Simulink Coder product uses these names as the names of the
parameters during code generation. The S-function sfun_runtime1.c shows how to
create run-time parameters all at once.

This approach to creating run-time parameters assumes that there is a one-to-one
correspondence between an S-function run-time parameters and its tunable dialog
parameters. This might not be the case. For example, an S-function might want to use

8-8

 Run-Time Parameters

a computed parameter whose value is a function of several dialog parameters. In such
cases, the S-function might need to create the run-time parameters individually.

Creating Run-Time Parameters Individually

To create run-time parameters individually, the S-function mdlSetWorkWidths method
should

1 Specify the number of run-time parameters it intends to use, using
ssSetNumRunTimeParams.

2 Use ssRegDlgParamAsRunTimeParam to register a run-time parameter that
corresponds to a single dialog parameter, even if there is a data type transformation,
or ssSetRunTimeParamInfo to set the attributes of a run-time parameter that
corresponds to more than one dialog parameter.

The following example uses ssRegDlgParamAsRunTimeParam and is taken from the S-
function sfun_runtime3.c. This example creates a run-time parameter directly from
the dialog parameter and with the same data type as the first input port's signal.
static void mdlSetWorkWidths(SimStruct *S)

{

 /* Get data type of input to use for run-time parameter */

 DTypeId dtId = ssGetInputPortDataType(S, 0);

 /* Define name of run-time parameter */

 const char_T *rtParamName = "Gain";

 ssSetNumRunTimeParams(S, 1); /* One run-time parameter */

 if (ssGetErrorStatus(S) != NULL) return;

 ssRegDlgParamAsRunTimeParam(S, GAIN_IDX, 0, rtParamName, dtId);

}

#endif /* MDL_SET_WORK_WIDTHS */

The next example uses ssSetRunTimeParamInfo and is taken from the S-function
sfun_runtime2.c.
static void mdlSetWorkWidths(SimStruct *S)

{

 ssParamRec p; /* Initialize an ssParamRec structure */

 int dlgP = GAIN_IDX; /* Index of S-function parameter */

 /* Configure run-time parameter information */

 p.name = "Gain";

 p.nDimensions = 2;

 p.dimensions = (int_T *) mxGetDimensions(GAIN_PARAM(S));

 p.dataTypeId = SS_DOUBLE;

 p.complexSignal = COMPLEX_NO;

 p.data = (void *)mxGetPr(GAIN_PARAM(S));

 p.dataAttributes = NULL;

8-9

8 Implementing Block Features

 p.nDlgParamIndices = 1;

 p.dlgParamIndices = &dlgP;

 p.transformed = false;

 p.outputAsMatrix = false;

 /* Set number of run-time parameters */

 if (!ssSetNumRunTimeParams(S, 1)) return;

 /* Set run-time parameter information */

 if (!ssSetRunTimeParamInfo(S, 0, &p)) return;

}

The S-function sfun_runtime2.c defines the parameters GAIN_IDX and GAIN_PARAM
as follows, prior to using these parameters in mdlSetWorkWidths.

#define GAIN_IDX 1

#define GAIN_PARAM(S) ssGetSFcnParam(S,GAIN_IDX)

Creating Run-Time Parameters from Multiple S-Function Parameters

Use the ssSetRunTimeParamInfo function in mdlSetWorkWidths to create run-time
parameters as a function of multiple S-function parameters. For example, consider an S-
function with two S-function parameters, density and volume. The S-function inputs a
force (F) and outputs an acceleration (a). The mdlOutputs method calculates the force
using the equation F=m*a, where the mass (m) is the product of the density and volume.

The S-function sfun_runtime4.c implements this example using a single run-time
parameter to store the mass. The S-function begins by defining the run-time parameter
data type, as well as variables associated with volume and density.
#define RUN_TIME_DATA_TYPE SS_DOUBLE

#if RUN_TIME_DATA_TYPE == SS_DOUBLE

typedef real_T RunTimeDataType;

#endif

#define VOL_IDX 0

#define VOL_PARAM(S) ssGetSFcnParam(S,VOL_IDX)

#define DEN_IDX 1

#define DEN_PARAM(S) ssGetSFcnParam(S,DEN_IDX)

The mdlSetWorkWidths method then initializes the run-time parameter, as follows.
static void mdlSetWorkWidths(SimStruct *S)

{

 ssParamRec p; /* Initialize an ssParamRec structure */

 int dlg[2]; /* Stores dialog indices */

 real_T vol = *mxGetPr(VOL_PARAM(S));

 real_T den = *mxGetPr(DEN_PARAM(S));

 RunTimeDataType *mass;

8-10

 Run-Time Parameters

 /* Initialize dimensions for the run-time parameter as a

 * local variable. The Simulink engine makes a copy of this

 * information to store in the run-time parameter. */

 int_T massDims[2] = {1,1};

 /* Allocate memory for the run-time parameter data. The S-function

 * owns this memory location. The Simulink engine does not copy the data.*/

 if ((mass=(RunTimeDataType*)malloc(1)) == NULL) {

 ssSetErrorStatus(S,"Memory allocation error");

 return;

 }

 /* Store the pointer to the memory location in the S-function

 * userdata. Since the S-function owns this data, it needs to

 * free the memory during mdlTerminate */

 ssSetUserData(S, (void*)mass);

 /* Call a local function to initialize the run-time

 * parameter data. The Simulink engine checks that the data is not

 * empty so an initial value must be stored. */

 calcMass(mass, vol, den);

 /* Specify mass as a function of two S-function dialog parameters */

 dlg[0] = VOL_IDX;

 dlg[1] = DEN_IDX;

 /* Configure run-time parameter information. */

 p.name = "Mass";

 p.nDimensions = 2;

 p.dimensions = massDims;

 p.dataTypeId = RUN_TIME_DATA_TYPE;

 p.complexSignal = COMPLEX_NO;

 p.data = mass;

 p.dataAttributes = NULL;

 p.nDlgParamIndices = 2;

 p.dlgParamIndices = &dlg

 p.transformed = RTPARAM_TRANSFORMED;

 p.outputAsMatrix = false;

 /* Set number of run-time parameters */

 if (!ssSetNumRunTimeParams(S, 1)) return;

 /* Set run-time parameter information */

 if (!ssSetRunTimeParamInfo(S,0,&p)) return;

}

The local function calcMass updates the run-time parameter value in
mdlSetWorkWidths and in mdlProcessParameters, when the values of density or
volume are tuned.
/* Function: calcMass ==

 * Abstract:

 * Local function to calculate the mass as a function of volume

8-11

8 Implementing Block Features

 * and density.

 */

static void calcMass(RunTimeDataType *mass, real_T vol, real_T den)

{

 *mass = vol * den;

}

The mdlOutputs method uses the stored mass to calculate the force.
/* Function: mdlOutputs ==

 * Abstract:

 *

 * Output acceleration calculated as input force divided by mass.

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y1 = ssGetOutputPortRealSignal(S,0);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 RunTimeDataType *mass =

 (RunTimeDataType *)((ssGetRunTimeParamInfo(S,0))->data);

 /*

 * Output acceleration = force / mass

 */

 y1[0] = (*uPtrs[0]) / *mass;

}

Lastly, the mdlTerminate method frees the memory allocated for the run-time
parameter in mdlSetWorkWidths.
/* Function: mdlTerminate ==

 * Abstract:

 * Free the user data.

 */

static void mdlTerminate(SimStruct *S)

{

 /* Free memory used to store the run-time parameter data*/

 RunTimeDataType *mass = ssGetUserData(S);

 if (mass != NULL) {

 free(mass);

 }

}

To run the example, open the Simulink model:
sfcndemo_runtime

Updating Run-Time Parameters

Whenever you change the values of S-function dialog parameters during simulation,
the Simulink engine invokes the S-function mdlCheckParameters method to

8-12

 Run-Time Parameters

validate the changes. If the changes are valid, the engine invokes the S-function
mdlProcessParameters method at the beginning of the next time step. This method
should update the S-function run-time parameters to reflect the changes in the dialog
parameters.

In a Level-2 MATLAB S-function, update the run-time parameters using the
AutoUpdateRuntimePrms method in the ProcessParameters callback method. For
example:

block.AutoUpdateRuntimePrms;

In a C S-function, update the run-time parameters using the method appropriate for how
the run-time parameters were created, as described in the following sections.

Updating All Parameters at Once

In a C MEX S-function, if there is a one-to-one correspondence between the S-function
tunable dialog parameters and the run-time parameters, i.e., the run-time parameters
were registered using ssRegAllTunableParamsAsRunTimeParams, the S-function
can use the SimStruct function ssUpdateAllTunableParamsAsRunTimeParams to
accomplish this task. This function updates each run-time parameter to have the same
value as the corresponding dialog parameter. See sfun_runtime1.c for an example.

Updating Parameters Individually

If there is not a one-to-one correspondence between the S-function dialog and run-
time parameters or the run-time parameters are transformed versions of the dialog
parameters, the mdlProcessParameters method must update each parameter
individually. Choose the method used to update the run-time parameter based on how it
was registered.

If you register a run-time parameter using ssSetRunTimeParamInfo, the
mdlProcessParameters method uses ssUpdateRunTimeParamData to update
the run-time parameter, as shown in sfun_runtime2.c. This function updates the
data field in the parameter's attributes record, ssParamRec, with a new value. You
cannot directly modify the ssParamRec, even though you can obtain a pointer to the
ssParamRec using ssGetRunTimeParamInfo.

If you register a run-time parameter using ssRegDlgParamAsRunTimeParam, the
mdlProcessParameters method uses ssUpdateDlgParamAsRunTimeParam to update
the run-time parameter, as is shown in sfun_runtime3.c.

8-13

8 Implementing Block Features

Updating Parameters as Functions of Multiple S-Function Parameters

If you register a run-time parameter as a function of multiple S-function parameters,
the mdlProcessParameters method uses ssUpdateRunTimeParamData to update the
run-time parameter.

The S-function sfun_runtime4.c provides an example. In this example, the
mdlProcessParameters method calculates a new value for the run-time parameter and
passes the value to the pointer of the run-time parameter's memory location, which was
allocated during the call to mdlSetWorkWidths. The mdlProcessParameters method
then passes the updated run-time parameter's pointer to ssUpdateRunTimeParamData.

Tuning Run-Time Parameters

Tuning a dialog parameter tunes the corresponding run-time parameter during
simulation and in code generated only if the dialog parameter meets the following
conditions:

• The S-function marks the dialog parameter as tunable, using
ssSetSFcnParamTunable.

• The dialog parameter is a MATLAB array of values with a data type supported by the
Simulink product.

Note that you cannot tune a run-time parameter whose value is a cell array or structure.

Accessing Run-Time Parameters

You can easily access run-time parameters from the S-function code. In order to access
run-time parameter data, choose one of the following methods based on the data type.

• If the data is of type double:

real_T *dataPtr = (real_T *) ssGetRunTimeParamInfo(S, #)->data;

• If the parameter is complex, the real and imaginary parts of the data are interleaved.
For example, if a user enters the following:

K = [1+2i, 3+4i; 5+6i, 7+8i]

the matrix that is generated is

K =

8-14

 Run-Time Parameters

 1+2i 3+4i

 5+6i 7+8i

The memory for this matrix is laid out as

[1, 2, 5, 6, 3, 4, 7, 8]

To access a complex run-time parameter from the S-function code:

for (i = 0; i<width; i++)

{

real_T realData = dataPtr[(2*i)];

real_T imagData = dataPtr[(2*i)+1];

}

Note: Matrix elements are written out in column-major format. Real and imaginary
values are interleaved.

See Also
ssGetSFcnParamDataType

8-15

8 Implementing Block Features

Input and Output Ports

In this section...

“Creating Input Ports for C S-Functions” on page 8-16
“Creating Input Ports for Level-2 MATLAB S-Functions” on page 8-20
“Creating Output Ports for C S-Functions” on page 8-21
“Creating Output Ports for Level-2 MATLAB S-Functions” on page 8-22
“Scalar Expansion of Inputs” on page 8-22
“Masked Multiport S-Functions” on page 8-24

Creating Input Ports for C S-Functions

To create and configure input ports, the mdlInitializeSizes method should first
specify the number of S-function input ports, using ssSetNumInputPorts. Then, for
each input port, the method should specify

• The dimensions of the input port (see “Initializing Input Port Dimensions” on page
8-17)

If you want your S-function to inherit its dimensionality from the port to
which it is connected, you should specify that the port is dynamically sized in
mdlInitializeSizes (see “Sizing an Input Port Dynamically” on page 8-18).

• Whether the input port allows scalar expansion of inputs (see “Scalar Expansion of
Inputs” on page 8-22)

• Whether the input port has direct feedthrough, using
ssSetInputPortDirectFeedThrough

A port has direct feedthrough if the input is used in either the mdlOutputs or
mdlGetTimeOfNextVarHit functions. The direct feedthrough flag for each input port
can be set to either 1=yes or 0=no. It should be set to 1 if the input, u, is used in the
mdlOutputs or mdlGetTimeOfNextVarHit routine. Setting the direct feedthrough
flag to 0 tells the Simulink engine that u is not used in either of these S-function
routines. Violating this leads to unpredictable results.

• The data type of the input port, if not the default double

Use ssSetInputPortDataType to set the input port's data type. If you want
the data type of the port to depend on the data type of the port to which it

8-16

 Input and Output Ports

is connected, specify the data type as DYNAMICALLY_TYPED. In this case,
you must provide implementations of the mdlSetInputPortDataType and
mdlSetDefaultPortDataTypes methods to enable the data type to be set correctly
during signal propagation.

• The numeric type of the input port, if the port accepts complex-valued signals

Use ssSetInputPortComplexSignal to set the input port's numeric type. If you
want the numeric type of the port to depend on the numeric type of the port to which
it is connected, specify the numeric type as COMPLEX_INHERITED. In this case,
you must provide implementations of the mdlSetInputPortComplexSignal and
mdlSetDefaultPortComplexSignals methods to enable the numeric type to be set
correctly during signal propagation.

You can configure additional input port properties using other S-function macros. See
“Input and Output Ports” on page 10-6 in the “SimStruct Macros and Functions
Listed by Usage” section for more information.

Note The mdlInitializeSizes method must specify the number of ports before setting
any properties. If it attempts to set a property of a port that doesn't exist, it is accessing
invalid memory and a segmentation violation occurs.

Initializing Input Port Dimensions

You can set input port dimensions using one of the following macros:

• If the input signal must be one-dimensional and the input port width is w, use

ssSetInputPortWidth(S, inputPortIdx, w)

• If the input signal must be a matrix of dimension m-by-n, use

ssSetInputPortMatrixDimensions(S, inputPortIdx, m, n)

• Otherwise, if the input signal can have either one or two dimensions, use

ssSetInputPortDimensionInfo(S, inputPortIdx, dimsInfo)

You can use this function to fully or partially initialize the port dimensions (see next
section).

8-17

8 Implementing Block Features

Sizing an Input Port Dynamically

If your S-function does not require that its input signals have specific dimensions, you
can set the dimensionality of the input ports to match the dimensionality of the signals
connected to them.

To dynamically dimension an input port:

• Specify some or all of the dimensions of the input port as dynamically sized in
mdlInitializeSizes.

If the input port can accept a signal of any dimensionality, use
ssSetInputPortDimensionInfo(S, inputPortIdx, DYNAMIC_DIMENSION)

to set the dimensionality of the input port.

If the input port can accept only vector (1-D) signals but the signals can be of any size,
use

ssSetInputPortWidth(S, inputPortIdx, DYNAMICALLY_SIZED)

to specify the dimensionality of the input port.

If the input port can accept only matrix signals but can accept any row or column size,
use

ssSetInputPortMatrixDimensions(S, inputPortIdx,

 DYNAMICALLY_SIZED, DYNAMICALLY_SIZED)

• Provide an mdlSetInputPortDimensionInfo method that sets the dimensions of
the input port to the size of the signal connected to it.

The Simulink engine invokes this method during signal propagation when it has
determined the dimensionality of the signal connected to the input port.

• Provide an mdlSetDefaultPortDimensionInfo method that sets the dimensions
of the block's ports to a default value. See sfun_dynsize.c for an example that
implements this macro.

The engine invokes this method during signal propagation when it cannot determine
the dimensionality of the signal connected to some or all of the block's input ports.
This can happen, for example, if an input port is unconnected. If the S-function does
not provide this method, the signal propagation routine sets the dimension of the
block's ports to 1-D scalar.

8-18

 Input and Output Ports

Example: Defining Multiple S-Function Input Ports

The following code in mdlInitializeSizes configures an S-function with two input
ports. See “Input and Output Ports” on page 10-6 in the “SimStruct Macros and
Functions Listed by Usage” section for more information on the macros used in this
example.

if (!ssSetNumInputPorts(S, 2)) return;

for (i = 0; i < 2; i++) {

 /* Input has direct feedthrough */

 ssSetInputPortDirectFeedThrough(S, i, 1);

 /* Input is a real signal */

 ssSetInputPortComplexSignal(S, i, COMPLEX_NO);

 /* Input is a dynamically sized 2-D matrix */

 ssSetInputPortMatrixDimensions(S ,i,

 DYNAMICALLY_SIZED, DYNAMICALLY_SIZED);

 /* Input inherits its sample time */

 ssSetInputPortSampleTime(S, i,INHERITED_SAMPLE_TIME);

 /* Input signal must be contiguous */

 ssSetInputPortRequiredContiguous(S, i, 1);

 /* The input port cannot share memory */

 ssSetInputPortOverWritable(S, i, 0);

}

During signal propagation, the Simulink engine calls this S-function's
mdlSetInputPortDimensionInfo macro to initialize the input port dimensions. In this
example, mdlSetInputPortDimensionInfo sets the input dimensions to the candidate
dimensions passed to the macro by the engine.

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_DIMENSION_INFO

static void mdlSetInputPortDimensionInfo(SimStruct *S,

 int_T port,

 const DimsInfo_T *dimsInfo)

{

 if(!ssSetInputPortDimensionInfo(S, port, dimsInfo)) return;

}

#endif

8-19

8 Implementing Block Features

For an example that configures an S-function with multiple input and output ports,
open the Simulink model sfcndemo_sfun_multiport and inspect the S-function
sfun_multiport.c.

Creating Input Ports for Level-2 MATLAB S-Functions

To create and configure input ports, the setup method should first specify the number
of S-function input ports, using the run-time object NumInputPorts property. Next, if
all input ports inherit their functional properties (data type, dimensions, complexity, and
sampling mode) from their input signals, include the following line in the setup method:

block.SetPreCompInpPortInfoToDynamic;

Then, for each input port, the setup method can specify

• The dimensions of the input port, using block.InputPort(n).Dimensions.

To individually specify that an input port's dimensions are dynamically sized,
assign a value of -1 to the dimensions. In this case, you can implement the
SetInputPortDimensions method to set the dimensions during signal propagation.

• Whether the input port has direct feedthrough, using
block.InputPort(n).DirectFeedthrough.

A port has direct feedthrough if the input is used in the Outputs functions to
calculate either the outputs or the next sample time hit. The direct feedthrough flag
for each input port can be set to either 1=yes or 0=no. Setting the direct feedthrough
flag to 0 tells the Simulink engine that u is not used to calculate the outputs or next
sample time hit. Violating this leads to unpredictable results.

• The data type of the input port, using block.InputPort(n).DatatypeID. See the
explanation for the “DatatypeID” property in the Simulink.BlockData data object
reference page for a list of valid data type IDs.

If you want the data type of the port to depend on the data type of the port to which
it is connected, specify the data type as -1. In this case, you can implement the
SetInputPortDataType method to set the data type during signal propagation.

• The numeric type of the input port, if the port accepts complex-valued signals, using
block.InputPort(n).Complexity.

If you want the numeric type of the port to depend on the numeric type of the port
to which it is connected, specify the numeric type as 'Inherited'. In this case, you

8-20

 Input and Output Ports

can implement the SetInputPortComplexSignal method to set the numeric type
during signal propagation.

For an example that configures a Level-2 MATLAB S-function with multiple input
and output ports, open the model sldemo_msfcn_lms and inspect the S-function
adapt_lms.m.

Creating Output Ports for C S-Functions

To create and configure output ports, the mdlInitializeSizes method should first
specify the number of S-function output ports, using ssSetNumOutputPorts. Then, for
each output port, the method should specify

• Dimensions of the output port

You can set output port dimensions using one of the following macros:

• ssSetOutputPortDimensionInfo

• ssSetOutputPortMatrixDimensions

• ssSetOutputPortVectorDimension

• ssSetOutputPortWidth

If you want the port's dimensions to depend on block connectivity, set the dimensions
to DYNAMIC_DIMENSIONS when using ssSetOutputPortDimensionInfo or
to DYNAMICALLY_SIZED for all other macros. The S-function must then provide
mdlSetOutputPortDimensionInfo and mdlSetDefaultPortDimensionInfo
methods to ensure that output port dimensions are set to the correct values in code
generation.

• Data type of the output port

Use ssSetOutputPortDataType to set the output port's data type. If you want
the data type of the port to depend on block connectivity, specify the data type
as DYNAMICALLY_TYPED. In this case, you must provide implementations of the
mdlSetOutputPortDataType and mdlSetDefaultPortDataTypes methods to
enable the data type to be set correctly during signal propagation.

• The numeric type of the output port, if the port outputs complex-valued signals

Use ssSetOutputPortComplexSignal to set the output port's numeric type. If
you want the numeric type of the port to depend on the numeric type of the port to

8-21

8 Implementing Block Features

which it is connected, specify the numeric type as COMPLEX_INHERITED. In this case,
you must provide implementations of the mdlSetOutputPortComplexSignal and
mdlSetDefaultPortComplexSignals methods to enable the numeric type to be set
correctly during signal propagation.

See “Creating Input Ports for C S-Functions” on page 8-16 for an example showing
how to initialize an S-function input port. You use the same procedure to initialize the S-
function output ports, but with the corresponding output port macro.

Creating Output Ports for Level-2 MATLAB S-Functions

To create output ports for Level-2 MATLAB S-functions the setup method should
first specify the number of S-function output ports, using the run-time object
NumOutputPorts property. Next, if all output ports inherit their functional properties
(data type, dimensions, complexity, and sampling mode), include the following line in the
setup method:

block.SetPreCompOutPortInfoToDynamic;

Configure the output ports exactly as you configure input ports. See “Creating Input
Ports for Level-2 MATLAB S-Functions” on page 8-20 for a list of properties you can
specify for each output port, substituting OutputPort for InputPort in each call to the
run-time object.

Scalar Expansion of Inputs

Scalar expansion of inputs refers conceptually to the process of expanding scalar input
signals to the same dimensions as wide input signals connected to other S-function input
ports. This is done by setting each element of the expanded signal to the value of the
scalar input.

• A Level-2 MATLAB S-function uses the default scalar expansion rules if the input and
output ports are specified as dynamically sized (see “Scalar Expansion of Inputs and
Parameters” in Using Simulink).

• A C MEX S-function's mdlInitializeSizes method enables scalar expansion of
inputs by setting the SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option, using
ssSetOptions.

With scalar expansion on, the S-function mdlInitializeSizes method should specify
that the input and output ports are dynamically sized. The Simulink engine uses a

8-22

 Input and Output Ports

default method to set the dimensions of the input and output ports. If the block has more
than two inputs, the input signals can be scalar or wide signals, where the wide signals
all have the same number of elements. In this case, the engine sets the dimensions of the
output ports to the width of the wide input signals and expands any scalar inputs to this
width. If the wide inputs are driven by 1-D and 2-D vectors, the output is a 2-D vector
signal, and the scalar inputs are expanded to a 2-D vector signal.

If scalar expansion is not on, the engine assumes that all ports (input and output ports)
must have the same dimensions, and it sets all port dimensions to the same dimensions
specified by one of the driving blocks.

Note The engine ignores the scalar expansion option if the S-function specifies
or controls the dimensions of its input and output ports either by initializing
the dimensions in mdlInitializeSizes, using mdlSetInputPortWidth
and mdlSetOutputPortWidth, or using mdlSetInputPortDimensionInfo,
mdlSetOutputPortDimensionInfo, and mdlSetDefaultPortDimensionInfo.

The best way to understand how to use scalar expansion is to consider the example
sfcndemo_sfun_multiport. This model contains three S-function blocks, each with
multiple input ports. The S-function sfun_multiport.c used in these blocks sets the
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option in its mdlInitializeSizes
method, allowing scalar expansion of the inputs. The S-function specifies that its inputs
and outputs are dynamically sized. Therefore, during signal propagation, the engine
sets the width of the input ports to the width of the signal connected to the port, and the
width of the output ports to the width of any wide input signal. The mdlOutputs method
performs an element-by-element sum on the input signals, expanding any scalar inputs,
as needed.

/* Calculate an element-by-element sum of the input signals.

 yWidth is the width of the output signal. */

for (el = 0; el < yWidth; el++) {

 int_T port;

 real_T sum = 0.0;

 for (port = 0; port < nInputPorts; port++) {

 /* Get the input signal value */

 InputRealPtrsType uPtrs =

 ssGetInputPortRealSignalPtrs(S,port);

8-23

8 Implementing Block Features

 if (el < ssGetInputPortWidth(S,port)) {

 /* Input is a wide signal. Use specific element */

 sum = sum + ((real_T)signs[port] * (*uPtrs[el]));

 } else {

 /* Use the scalar value to expand the signal */

 sum = sum + ((real_T)signs[port] * (*uPtrs[0]));

 }

 }

}

Masked Multiport S-Functions

If you are developing masked multiport S-function blocks whose number of ports varies
based on some parameter, and want to place them in a Simulink library, you must
specify that the mask modifies the appearance of the block. To do this, execute the
command

 set_param(blockname,'MaskSelfModifiable','on')

at the MATLAB command prompt before saving the library, where blockname is the
full path to the block. Failure to specify that the mask modifies the appearance of the
block means that an instance of the block in a model reverts to the number of ports in the
library whenever you load the model or update the library link.

8-24

 Custom Data Types

Custom Data Types

In this section...

“Custom Data Types in C S-Functions” on page 8-25
“Using Simulink Recognizable Data Types in C S-Functions” on page 8-25
“Using Opaque Data Types in C S-Functions” on page 8-26
“Using Custom Data Types in Level-2 MATLAB S-Functions” on page 8-27

Custom Data Types in C S-Functions

C S-Functions can communicate using user-defined data types. There are two broad
categories for these data types:

• Simulink recognizable custom data types — These are custom data types from
a Simulink.AliasType, Simulink.Bus, Simulink.NumericType, or an
Enumerated data type that can also interact with other Simulink blocks.

• Opaque data types — These are data types for use only with S-Function blocks
programmed to understand them. You might define opaque data types in cases in
which other Simulink blocks do not need to use the data types.

Using Simulink Recognizable Data Types in C S-Functions

To register a custom data type recognizable by Simulink, the S-function
mdlInitializeSizes routine must register the data type, using
ssRegisterTypeFromNamedObject.

For example, the following code placed at the beginning of mdlInitializeSizes
defines a custom data type from a Simulink.AliasType object named u8 in the
MATLAB workspace. The example then assigns the custom data type to the first output
port.

int id1;

ssRegisterTypeFromNamedObject(S, "u8", &id1);

ssSetOutputPortDataType(S, 0, id1);

In addition, you can use the identifier id1 to assign this data type to S-function
parameters, DWork vectors, and input ports.

8-25

8 Implementing Block Features

Using Opaque Data Types in C S-Functions

For cases in which S-Functions need to communicate using a data type that cannot be
understood by Simulink, the S-function mdlInitializeSizes routine must:

1 Register the data type, using ssRegisterDataType.
2 Specify the amount of memory in bytes required to store an instance of the data type,

using ssSetDataTypeSize.
3 Specify the value that represents zero for the data type, using ssSetDataTypeZero.

Define the user-defined data type in an external header file to include in the level 2 C S-
Function.

/* Define the structure of the user-defined data type */

typedef struct{

 int8_T a;

 uint16_T b;

}myStruct;

Place the following code at the beginning of mdlInitializeSizes to set the size and
zero representation of the custom data type myStruct.

/* Define variables */

int_T status;

DTypeId id;

myStruct tmp;

/* Register the user-defined data types */

id = ssRegisterDataType(S, "myStruct");

if(id == INVALID_DTYPE_ID) return;

/* Set the size of the user-defined data type */

status = ssSetDataTypeSize(S, id, sizeof(tmp));

if(status == 0) return;

/* Set the zero representation */

tmp.a = 0;

tmp.b = 1;

status = ssSetDataTypeZero(S, id, &tmp);

8-26

 Custom Data Types

Note If you have Simulink Coder, you cannot use the software to generate code for S-
functions that contain macros to define custom data types. You must use an inline S-
function that accesses Target Language Compiler functions to generate code with custom
data types. For more information, see “Inlining S-Functions” (Simulink Coder).

Using Custom Data Types in Level-2 MATLAB S-Functions

Level-2 MATLAB S-functions do not support defining custom data types within the
S-function. However, input and output ports can inherit their data types from a
Simulink.NumericType or Simulink.AliasType object. For example, the S-function
in the following model inherits its input data type from the Constant block:

The Constant block's Output data type field contains the value MyDouble, which is
a Simulink.AliasType defined in the MATLAB workspace with the following line of
code:

MyDouble = Simulink.AliasType('double');

The input and output ports of the Level-2 MATLAB S-function msfcn_inheritdt.m
inherit their data types. When the Simulink engine performs data type propagation, it
assigns the data type MyDouble to these ports.

You can define a fixed-point data type within a Level-2 MATLAB S-function, using one of
the following three methods:

• RegisterDataTypeFxpBinaryPoint registers a fixed-point data type with binary
point-only scaling

• RegisterDataTypeFxpFSlopeFixExpBias registers a fixed-point data type with
[Slope Bias] scaling specified in terms of fractional slope, fixed exponent, and bias

• RegisterDataTypeFxpSlopeBias registers a data type with [Slope Bias] scaling

Note If the registered data type is not one of the Simulink built-in data types, you must
have a Fixed-Point Designer™ license.

8-27

8 Implementing Block Features

If you have Fixed-Point Designer, inspect the example models and S-functions provided
with the software for examples using the macros for defining fixed-point data types.

8-28

 Sample Times

Sample Times

In this section...

“About Sample Times” on page 8-29
“Block-Based Sample Times” on page 8-30
“Specifying Port-Based Sample Times” on page 8-33
“Hybrid Block-Based and Port-Based Sample Times” on page 8-39
“Multirate S-Function Blocks” on page 8-40
“Multirate S-Functions and Sample Time Hit Calculations” on page 8-42
“Synchronizing Multirate S-Function Blocks” on page 8-42
“Specifying Model Reference Sample Time Inheritance” on page 8-43

About Sample Times

You can specify the sample-time behavior of your S-functions in
mdlInitializeSampleTimes. Your S-function can inherit its rates from the blocks that
drive it or define its own rates.

You can specify your S-function rates (i.e., sample times) as

• Block-based sample times
• Port-based sample times
• Hybrid block-based and port-based sample times

With block-based sample times, the S-function specifies a set of operating rates for
the block as a whole during the initialization phase of the simulation. With port-based
sample times, the S-function specifies a sample time for each input and output port
individually during initialization. During the simulation phase, with block-based sample
times, the S-function processes all inputs and outputs each time a sample hit occurs for
the block. By contrast, with port-based sample times, the block processes a particular
port only when a sample hit occurs for that port.

For example, consider two sample rates, 0.5 and 0.25 seconds, respectively:

• In the block-based method, selecting 0.5 and 0.25 directs the block to execute inputs
and outputs at 0.25 second increments.

8-29

8 Implementing Block Features

• In the port-based method, setting the input port to 0.5 and the output port to 0.25
causes the block to process inputs at 2 Hz and outputs at 4 Hz.

You should use port-based sample times if your application requires unequal sample
rates for input and output execution or if you do not want the overhead associated with
running input and output ports at the highest sample rate of your block.

In some applications, an S-Function block might need to operate internally at one or
more sample rates while inputting or outputting signals at other rates. The hybrid block-
and port-based method of specifying sample rates allows you to create such blocks.

In typical applications, you specify only one block-based sample time. Advanced S-
functions might require the specification of port-based or multiple block sample times.

Block-Based Sample Times

Level-2 MATLAB S-functions specify block-based sample times in their setup method.
Use the line

block.SampleTimes = [sampleTime offsetTime];

to specify the sample time. Use a value of [-1 0] to indicate an inherited sample time.
See “Specify Sample Time” in Using Simulink for a complete list of valid sample times.

C MEX S-functions specify block-based sample time information in

• mdlInitializeSizes

• mdlInitializeSampleTimes

The next two sections discuss how to specify block-based sample times for C MEX S-
functions. A third section presents a simple example that shows how to specify sample
times in mdlInitializeSampleTimes. For a detailed example, see mixedm.c.

Specifying the Number of Sample Times in mdlInitializeSizes

To configure your S-function for block-based sample times, use

ssSetNumSampleTimes(S,numSampleTimes);

where numSampleTimes > 0. This tells the Simulink engine that your S-function has
block-based sample times. the engine calls mdlInitializeSampleTimes, which in turn
sets the sample times.

8-30

 Sample Times

Setting Sample Times and Specifying Function Calls in mdlInitializeSampleTimes

mdlInitializeSampleTimes specifies two pieces of execution information:

• Sample and offset times — In mdlInitializeSampleTimes, you must specify
the sampling period and offset for each sample time using ssSetSampleTime
and ssSetOffsetTime. If applicable, you can calculate the appropriate sampling
period and offset prior to setting them, for example, by computing the best sample
time for the block based on the S-function dialog parameters obtained using
ssGetSFcnParam.

• Function calls — In mdlInitializeSampleTimes, use ssSetCallSystemOutput
to specify the output elements that are performing function calls.
Seesfun_fcncall.c for an example and “Function-Call Subsystems and S-
Functions” on page 8-53 for an explanation of this S-function.

You specify the sample times as pairs [sample_time, offset_time], using these
macros

ssSetSampleTime(S, sampleTimePairIndex, sample_time)

ssSetOffsetTime(S, offsetTimePairIndex, offset_time)

where sampleTimePairIndex and offsetTimePairIndex starts at 0.

The valid sample time pairs are (uppercase values are macros defined in simstruc.h):

[CONTINUOUS_SAMPLE_TIME, 0.0]

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

[discrete_sample_period, offset]

[VARIABLE_SAMPLE_TIME , 0.0]

Alternatively, you can specify that the sample time is inherited from the driving block, in
which case the S-function can have only one sample time pair,

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

Note If your S-function inherits its sample time, you should specify whether it is safe
to use the S-function in a referenced model, i.e., a model referenced by another model.

8-31

8 Implementing Block Features

See “Specifying Model Reference Sample Time Inheritance” on page 8-43 for more
information.

The following guidelines might help in specifying sample times:

• A continuous function that changes during minor integration steps should register the
[CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

• A continuous function that does not change during minor integration steps should
register the [CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
sample time.

• A discrete function that changes at a specified rate should register the discrete sample
time pair

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

• A discrete function that changes at a variable rate should register the variable-step
discrete [VARIABLE_SAMPLE_TIME, 0.0] sample time. In C MEX S-functions, the
mdlGetTimeOfNextVarHit function is called to get the time of the next sample hit
for the variable-step discrete task. The VARIABLE_SAMPLE_TIME can be used with
variable-step solvers only.

If your function has no intrinsic sample time, you must indicate that it is inherited
according to the following guidelines:

• A function that changes as its input changes, even during minor integration steps,
should register the [INHERITED_SAMPLE_TIME, 0.0] sample time.

• A function that changes as its input changes, but doesn't change during minor
integration steps (meaning, is held during minor steps), should register the
[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.

To check for a sample hit during execution (in mdlOutputs or mdlUpdate), use the
ssIsSampleHit or ssIsContinuousTask macro. For example, use the following code
fragment to check for a continuous sample hit:

8-32

 Sample Times

if (ssIsContinuousTask(S,tid)) {

}

To determine whether the third (discrete) task has a hit, use the following code fragment:

if (ssIsSampleHit(S,2,tid) {

}

The Simulink engine always assigns an index of 0 to the continuous sample rate, if it
exists, however you get incorrect results if you use ssIsSampleHit(S,0,tid).

Example: mdlInitializeSampleTimes

This example specifies that there are two discrete sample times with periods of 0.01 and
0.5 seconds.

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, 0.01);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetSampleTime(S, 1, 0.5);

 ssSetOffsetTime(S, 1, 0.0);

} /* End of mdlInitializeSampleTimes. */

Specifying Port-Based Sample Times

You cannot use port-based sample times with S-functions that have neither input ports
nor output ports. If an S-function uses port-based sample times and has no ports, the S-
function produces errors when the Simulink model is updated or run. If the number of
input or output ports on an S-function is variable, extra protection should be added into
the S-function to ensure the total number of ports does not go to zero.

To use port-based sample times in a Level-2 MATLAB S-function:

• Specify the sample and offset times for each S-function port in the setup method. For
example:

block.InputPort(1).SampleTime = [-1 0];

block.OutputPort(1).SampleTime = [-1 0];

The setup method must not specify a sample time for the block when using port-
based sample times.

• Provide SetInputPortSampleTime and SetOutputPortSampleTime methods,
even if your S-function does not inherit its port-based sample times.

8-33

8 Implementing Block Features

To use port-based sample times in your C MEX S-function, you must specify the number
of sample times as port-based in the S-function mdlInitializeSizes method:

ssSetNumSampleTimes(S, PORT_BASED_SAMPLE_TIMES)

You must also specify the sample time of each input and output port in the S-function
mdlInitializeSizes method, using the following macros

ssSetInputPortSampleTime(S, idx, period)

ssSetInputPortOffsetTime(S, idx, offset)

ssSetOutputPortSampleTime(S, idx, period)

ssSetOutputPortOffsetTime(S, idx, offset)

Note mdlInitializeSizes should not contain any ssSetSampleTime or
ssSetOffsetTime calls when you use port-based sample times.

The call to ssSetNumSampleTimes can be placed before or after the port-based
sample times are actually specified in mdlInitializeSizes. However, if
ssSetNumSampleTimes does not configure the S-function to use port-based sample
times, any sample times set on the ports will be ignored.

For any given port, you can specify

• A specific sample time and period

For example, the following code sets the sample time of the S-function first input port
to 0.1 and the offset time to 0.

ssSetInputPortSampleTime(S, 0, 0.1);

ssSetInputPortOffsetTime(S, 0, 0);

• Inherited sample time (-1), i.e., the port inherits its sample time from the port to
which it is connected (see “Specifying Inherited Sample Time for a Port” on page
8-35)

• Constant sample time (Inf), i.e., the signal coming from the port is constant (see
“Specifying Constant Sample Time (Inf) for a Port” on page 8-36)

Note To be usable in a triggered subsystem, all your S-function ports must have
either inherited (–1) or constant sample time (Inf). For more information, see
“Configuring Port-Based Sample Times for Use in Triggered Subsystems” on page
8-37.

8-34

 Sample Times

Specifying Inherited Sample Time for a Port

In a Level-2 MATLAB S-function, use a value of [-1 0] for the SampleTime property of
each port to specify that the port inherits its sample time.

To specify that a port's sample time is inherited in a C MEX S-function, the
mdlInitializeSizes method should set its period to -1 and its offset to 0. For
example, the following code specifies inherited sample time for a C MEX S-function first
input port:

ssSetInputPortSampleTime(S, 0, -1);

ssSetInputPortOffsetTime(S, 0, 0);

When you specify port-based sample times, the Simulink engine calls
mdlSetInputPortSampleTime and mdlSetOutputPortSampleTime to determine the
rates of inherited signals.

Once all rates have been determined, the engine calls mdlInitializeSampleTimes.
Even though there is no need to initialize port-based sample times at this point, the
engine invokes this method to give your S-function an opportunity to configure function-
call connections. Your S-function must thus provide an implementation for this method
regardless of whether it uses port-based sample times or function-call connections.
Although you can provide an empty implementation, you might want to use it to check
the appropriateness of the sample times that the block inherited during sample time
propagation. Use ssGetInputPortSampleTime and ssGetOutputPortSampleTime
in mdlInitializeSampleTimes to obtain the values of the inherited sample times. For
example, the following code in mdlInitializeSampleTimes checks if the S-function
first input inherited a continuous sample time.
if (!ssGetInputPortSampleTime(S,0)) {

 ssSetErrorStatus(S,"Cannot inherit a continuous sample time.")

};

Note If you specify that your S-function ports inherit their sample time, you should
also specify whether it is safe to use the S-function in a referenced model, i.e., a model
referenced by another model. See “Specifying Model Reference Sample Time Inheritance”
on page 8-43 for more information.

If you write TLC code to generate inlined code from an S-function, and if the TLC code
contains an Outputs function, you must modify the TLC code if these conditions are
true:

8-35

8 Implementing Block Features

• The output port has a constant value. It uses or inherits a sample time of Inf.
• The S-function is a multirate S-function or uses port-based sample times.

In this case, the TLC code must generate code for the constant-valued output port
by using the function OutputsForTID instead of the function Outputs. For more
information, see “Specifying Constant Sample Time (Inf) for a Port” on page 8-36.

To prevent ports from inheriting a sample time of Inf, set the option
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME in the S-function code. In this case,
you can use the TLC function Outputs to generate code for constant-valued output ports.

Specifying Constant Sample Time (Inf) for a Port

If your S-function uses port-based sample times, it can set a sample time of Inf on any of
its ports. A port-based sample time of Inf means that the signal entering or leaving the
port stays constant.

In a level-2 MATLAB S-function, use this code to specify a sample time of Inf for a port:

block.OutputPort(1).SampleTime = [inf 0];

block.SetAllowConstantSampleTime(true);

To make a port output a constant value, the S-function must:

• Use ssSetOptions in its mdlInitializeSizes method to add support for a sample
time of Inf:

ssSetOptions(S,SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME);

Note: This option causes the S-function’s ports to support a sample time of Inf,
including ports that inherit their sample times from other blocks. If any S-function
ports that inherit sample time cannot have a sample time of Inf, an error occurs.
Set sample times for these ports using the mdlSetInputPortSampleTime and
mdlSetOutputPortSampleTime methods.

• Set the port's sample time to Inf and its offset to 0, e.g.,

ssSetInputPortSampleTime(S,0,mxGetInf());

ssSetInputPortOffsetTime(S,0,0);

• Check in mdlOutputs whether the method's tid argument equals CONSTANT_TID
and if so, set the value of the port's output if it is an output port.

8-36

 Sample Times

To see an example of how to create ports which output a constant value, see
sfun_port_constant.c, the source file for the sfcndemo_port_constant example.

If you write TLC code to generate inlined code from an S-function, and if the TLC code
contains an Outputs function, modify the TLC code if all these conditions are true:

• The output port has a constant value. It uses or inherits a sample time of Inf.
• The S-function is a multirate S-function or uses port-based sample times.

In this case, the TLC code must generate code for the constant-valued output port by
using the function OutputsForTID instead of the function Outputs. The function
OutputsForTID generates output code for the constant-valued component of the S-
function. If you configure a model to generate multitasking code, OutputsForTID also
generates output code for the periodic components of the S-function.

For example, view the TLC file sfun_port_constant.tlc for the C S-function
sfun_port_constant.c in the model sfcndemo_port_constant. In the model, the
input of the block S-Function2 has a constant value throughout the simulation. In the
S-function code, the first output port inherits the sample time of the input port, so the
output port also has a constant value. The S-function code directly specifies a constant
value for the second output port.

In the TLC code, if the port has a constant value, the function Outputs does not generate
code for the first output port. The function does not generate code for the second output
port under any circumstances because the port always has a constant value.

For this S-function, OutputsForTID generates code for output ports that have a
constant value. The code generator invokes the function OutputsForTID, and sets the
argument tid to the task identifier that corresponds to constant values. Only if the task
identifier of an output port corresponds to constant values does ,OutputsForTID then
generate code for the port.

Configuring Port-Based Sample Times for Use in Triggered Subsystems

Level-2 MATLAB S-functions with port-based sample times cannot be placed in a
triggered subsystem. You must modify your S-function to use block-based sample times if
you need to include it in a triggered subsystem.

To use a C MEX S-function in a triggered subsystem, your port-based sample time S-
function must perform the following tasks.

• Use ssSetOptions in the mdlInitializeSizes method to indicate the S-function
can run in a triggered subsystem:

8-37

8 Implementing Block Features

ssSetOptions(S,

SS_OPTION_ALLOW_PORT_SAMPLE_TIME_IN_TRIGSS);

• Set all of its ports to have either inherited (-1) or constant sample time (Inf) in its
mdlInitializeSizes method.

• Handle inheritance of a triggered sample time in mdlSetInputPortSampleTime and
mdlSetOutputPortSampleTime methods as follows.

Since the S-function ports inherit their sample times, the Simulink engine invokes
either mdlSetInputPortSampleTime or mdlSetOutputPortSampleTime during
sample time propagation. The macro ssSampleAndOffsetAreTriggered can
be used in these methods to determine if the S-function resides in a triggered
subsystem. If the S-function does reside in a triggered subsystem, whichever method
is called must set the sample time and offset of the port for which it is called to
INHERITED_SAMPLE_TIME (-1).

Setting a port's sample time and offset both to INHERITED_SAMPLE_TIME indicates
that the sample time of the port is triggered, i.e., it produces an output or accepts
an input only when the subsystem in which it resides is triggered. The method must
then also set the sample times and offsets of all of the other S-function input and
output ports to have either triggered or constant sample time (Inf), whichever is
appropriate, e.g.,

static void mdlSetInputPortSampleTime(SimStruct *S,

 int_T portIdx,

 real_T sampleTime

 real_T offsetTime)

{

 /* If the S-function resides in a triggered subsystem,

 the sample time and offset passed to this method

 are both equal to INHERITED_SAMPLE_TIME. Therefore,

 if triggered, the following lines set the sample time

 and offset of the input port to INHERITED_SAMPLE_TIME.*/

 ssSetInputPortSampleTime(S, portIdx, sampleTime);

 ssSetInputPortOffsetTime(S, portIdx, offsetTime);

 /* If triggered, set the output port to inherited, as well */

 if (ssSampleAndOffsetAreTriggered(sampleTime,offsetTime)) {

 ssSetOutputPortSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOutputPortOffsetTime(S, 0, INHERITED_SAMPLE_TIME);

 /* Note, if there are additional input and output ports

 on this S-function, they should be set to either

 inherited or constant at this point, as well. */

 }

8-38

 Sample Times

}

There is no way for an S-function residing in a triggered subsystem to predict
whether the Simulink engine will call mdlSetInputPortSampleTime or
mdlSetOutputPortSampleTime to set its port sample times. For this reason, both
methods must be able to set the sample times of all ports correctly so the engine has
to call only one of the methods a single time.

• In mdlUpdate and mdlOutputs, use
ssGetPortBasedSampleTimeBlockIsTriggered to check whether the S-function
resides in a triggered subsystem and if so, use appropriate algorithms for computing
its states and outputs.

See sfun_port_triggered.c, the source file for the sfcndemo_port_triggered
example model, for an example of how to create an S-function that can be used in a
triggered subsystem.

Hybrid Block-Based and Port-Based Sample Times

The hybrid method of assigning sample times combines the block-based and port-
based methods. You first specify, in mdlInitializeSizes, the total number of rates
at which your block operates, including both block and input and output rates, using
ssSetNumSampleTimes.

You then set the SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED option, using
ssSetOptions, to tell the simulation engine that you are going to use the port-based
method to specify the rates of the input and output ports individually. Next, as in the
block-based method, you specify the periods and offsets of all of the block's rates, both
internal and external, using

ssSetSampleTime

ssSetOffsetTime

Finally, as in the port-based method, you specify the rates for each port, using

ssSetInputPortSampleTime(S, idx, period)

ssSetInputPortOffsetTime(S, idx, offset)

ssSetOutputPortSampleTime(S, idx, period)

ssSetOutputPortOffsetTime(S, idx, offset)

Note that each of the assigned port rates must be the same as one of the previously
declared block rates. For an example S-function, see mixedm.c.

8-39

8 Implementing Block Features

Note: If you use the SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED option, your S-
function cannot inherit sample times. Instead, you must specify the rate at which each
input and output port runs.

Level-2 MATLAB S-functions support port-based sample times, but do not support
hybrid block-based sample times.

Multirate S-Function Blocks

In a multirate S-Function block, you can encapsulate the code that defines each behavior
in the mdlOutputs and mdlUpdate functions with a statement that determines
whether a sample hit has occurred. In a C MEX S-function, the ssIsSampleHit macro
determines whether the current time is a sample hit for a specified sample time. The
macro has this syntax:

ssIsSampleHit(S, st_index, tid)

where S is the SimStruct, st_index identifies a specific sample time index, and tid is
the task ID (tid is an argument to the mdlOutputs and mdlUpdate functions).

For example, these statements in a C MEX S-function specify three sample times: one for
continuous behavior and two for discrete behavior.

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetSampleTime(S, 1, 0.75);

ssSetSampleTime(S, 2, 1.0);

In the mdlUpdate function, the following statement encapsulates the code that defines
the behavior for the sample time of 0.75 second.

if (ssIsSampleHit(S, 1, tid)) {

}

The second argument, 1, corresponds to the second sample time, 0.75 second.

Use the following lines to encapsulate the code that defines the behavior for the
continuous sample hit:

if (ssIsContinuousTask(S,tid)) {

}

In a Level-2 MATLAB S-function, use the IsSampleHit method to determine whether
the current simulation time is one at which a task handled by this block is active.

8-40

 Sample Times

If you write TLC code to generate inlined code from an S-function, and if the TLC code
contains an Outputs function, you must modify the TLC code if all of these conditions
are true:

• The output port has a constant value. It uses or inherits a sample time of Inf.
• The S-function is a multi-rate S-function.

In this case, the TLC code must generate code for the constant-valued output port
by using the function OutputsForTID instead of the function Outputs. For more
information, see “Specifying Constant Sample Time (Inf) for a Port” on page 8-36.

Example of Defining a Sample Time for a Continuous Block

This example defines a sample time for a block that is continuous.

/* Initialize the sample time and offset. */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

}

You must add this statement to the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 1);

Example of Defining a Sample Time for a Hybrid Block

This example defines sample times for a hybrid S-Function block.

/* Initialize the sample time and offset. */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 /* Continuous state sample time and offset. */

 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 /* Discrete state sample time and offset. */

 ssSetSampleTime(S, 1, 0.1);

 ssSetOffsetTime(S, 1, 0.025);

}

In the second sample time, the offset causes the Simulink engine to call the mdlUpdate
function at these times: 0.025 second, 0.125 second, 0.225 second, and so on, in
increments of 0.1 second.

8-41

8 Implementing Block Features

The following statement, which indicates how many sample times are defined, also
appears in the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 2);

Multirate S-Functions and Sample Time Hit Calculations

For fixed-step solvers, Simulink uses integer arithmetic, rather than floating-point
arithmetic, to calculate the sample time hits. Consequently, task times are integer
multiples of their corresponding sample time periods.

This calculation method becomes important if you consider performing Boolean
logic based upon task times in multirate S-functions. For example, consider an S-
function that has two sample times. The fact that (ssIsSampleHit(S, idx1) == true &&
ssIsSampleHit(S,idx2) == true, does not guarantee that ssGetTaskTime(S, idx1) ==
ssGetTaskTime(S, idx2).

Synchronizing Multirate S-Function Blocks

If tasks running at different rates need to share data, you must ensure that data
generated by one task is valid when accessed by another task running at a different rate.
You can use the ssIsSpecialSampleHit macro in the mdlUpdate or mdlOutputs
routine of a multirate S-function to ensure that the shared data is valid. This macro
returns true if a sample hit has occurred at one rate and a sample hit has also occurred
at another rate in the same time step. It thus permits a higher rate task to provide data
needed by a slower rate task at a rate the slower task can accommodate. When using the
ssIsSpecialSampleHit macro, the slower sample time must be an integer multiple of
the faster sample time.

Suppose, for example, that your model has an input port operating at one rate (with a
sample time index of 0) and an output port operating at a slower rate (with a sample
time index of 1). Further, suppose that you want the output port to output the value
currently on the input. The following example illustrates usage of this macro.

if (ssIsSampleHit(S, 0, tid) { if (ssIsSpecialSampleHit(S, 0, 1, tid) { /* Transfer input to output memory. */ ... }}if (ssIsSampleHit(S, 1, tid) { /* Emit output. */ ...}

In this example, the first block runs when a sample hit occurs at the input rate. If the hit
also occurs at the output rate, the block transfers the input to the output memory. The
second block runs when a sample hit occurs at the output rate. It transfers the output in
its memory area to the block's output.

8-42

 Sample Times

Note that higher-rate tasks always run before slower-rate tasks. Thus, the input task in
the preceding example always runs before the output task, ensuring that valid data is
always present at the output port.

In a Level-2 MATLAB S-function, use the IsSpecialSampleHit method to determine
whether the current simulation time is one at which multiple tasks implemented by this
block are active.

Specifying Model Reference Sample Time Inheritance

If your C MEX S-function inherits its sample times from the blocks that
drive it, your S-function should specify whether referenced models containing
your S-function can inherit sample times from their parent model. If the
S-function output does not depend on its inherited sample time, use the
ssSetModelReferenceSampleTimeInheritanceRule macro to set the S-function
sample time inheritance rule to USE_DEFAULT_FOR_DISCRETE_INHERITANCE.
Otherwise, set the rule to DISALLOW_SAMPLE_TIME_INHERITANCE to disallow sample-
time inheritance for referenced models that include S-functions whose outputs depend on
their inherited sample time and thereby avoid inadvertent simulation errors.

Note If your S-function does not set this flag, the Simulink engine assumes that it does
not preclude a referenced model containing it from inheriting a sample time. However,
the engine optionally warns you that the referenced model contains S-functions that
do not specify a sample-time inheritance rule (see “Blocks Whose Outputs Depend on
Inherited Sample Time”).

If you are uncertain whether an existing S-function output depends on its inherited
sample time, check whether it invokes any of the following C macros:

• ssGetSampleTime

• ssGetInputPortSampleTime

• ssGetOutputPortSampleTime

• ssGetInputPortOffsetTime

• ssGetOutputPortOffsetTime

• ssGetSampleTimePtr

• ssGetInputPortSampleTimeIndex

8-43

8 Implementing Block Features

• ssGetOutputPortSampleTimeIndex

• ssGetSampleTimeTaskID

• ssGetSampleTimeTaskIDPtr

or TLC functions:

• LibBlockSampleTime

• CompiledModel.SampleTime

• LibBlockInputSignalSampleTime

• LibBlockInputSignalOffsetTime

• LibBlockOutputSignalSampleTime

• LibBlockOutputSignalOffsetTime

If your S-function does not invoke any of these macros or functions, its output does not
depend on its inherited sample time and hence it is safe to use in referenced models that
inherit their sample time.

Sample-Time Inheritance Rule Example

As an example of an S-function that precludes a referenced model from inheriting its
sample time, consider an S-function that has the following mdlOutputs method:

static void mdlOutputs(SimStruct *S, int_T tid) {

 const real_T *u = (const real_T*)

 ssGetInputPortSignal(S,0);

 real_T *y = ssGetOutputPortSignal(S,0);

 y[0] = ssGetSampleTime(S,tid) * u[0];

}

The output of this S-function is its inherited sample time, hence its output depends on
its inherited sample time, and hence it is unsafe to use in a referenced model. For this
reason, this S-function should specify its model reference inheritance rule as follows:

ssSetModelReferenceSampleTimeInheritanceRule

(S, DISALLOW_SAMPLE_TIME_INHERITANCE);

8-44

 Zero Crossings

Zero Crossings
S-functions model zero crossings using the mode work vector (or a DWork vector
configured as a mode vector) and the continuous zero-crossing vector. Whether the S-
function uses mode or DWork vectors, the concept and implementation are the same. For
an example using DWork vectors to model zero crossings, see “DWork Mode Vector” on
page 7-19 in the “Using Work Vectors” section. The remainder of this section uses mode
vectors to model zero crossings.

Note Level-2 MATLAB S-functions do not support zero-crossing detection. The
remainder of this section pertains only to C MEX S-functions.

Elements of the mode vector are integer values. You specify the number of mode vector
elements in mdlInitializeSizes, using ssSetNumModes(S,num). You can then
access the mode vector using ssGetModeVector. The mode vector values determine
how the mdlOutputs routine operates when the solvers are homing in on zero crossings.
The Simulink solvers track the zero crossings or state events (i.e., discontinuities in
the first derivatives) of some signal, usually a function of an input to your S-function,
by looking at the continuous zero crossings. Register the number of continuous zero
crossings in mdlInitializeSizes, using ssSetNumNonsampledZCs(S, num), then
include an mdlZeroCrossings routine to calculate the continuous zero crossings. The
S-function sfun_zc_sat.c contains a zero-crossing example. The remainder of this
section describes the portions of this S-function that pertain to zero-crossing detection.
For a full description of this example, see “Zero-Crossing Detection” on page 8-93.

First, mdlInitializeSizes specifies the sizes for the mode and continuous zero-
crossing vectors using the following lines of code.

ssSetNumModes(S, DYNAMICALLY_SIZED);

ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

Since the number of modes and continuous zero crossings is dynamically sized,
mdlSetWorkWidths must initialize the actual size of these vectors. In this example,
shown below, there is one mode vector for each output element and two continuous zero
crossings for each mode. In general, the number of continuous zero crossings needed
for each mode depends on the number of events that need to be detected. In this case,
each output (mode) needs to detect when it hits the upper or the lower bound, hence two
continuous zero crossings per mode.

static void mdlSetWorkWidths(SimStruct *S)

8-45

8 Implementing Block Features

{

 int nModes;

 int nNonsampledZCs;

 nModes = numOutput;

 nNonsampledZCs = 2 * numOutput;

 ssSetNumModes(S,nModes);

 ssSetNumNonsampledZCs(S,nNonsampledZCs);

}

Next, mdlOutputs determines which mode the simulation is running in at the beginning
of each major time step. The method stores this information in the mode vector so it is
available when calculating outputs at both major and minor time steps.
/* Get the mode vector */

int_T *mode = ssGetModeVector(S);

 /* Specify three possible mode values.*/

 enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

 /* Update the mode vector at the beginning of a major time step */

 if (ssIsMajorTimeStep(S)) {

 for (iOutput = 0; iOutput < numOutput; iOutput++) {

 if (*uPtrs[uIdx] > *upperLimit) {

 /* Upper limit is reached. */

 mode[iOutput] = UpperLimitEquation;

 } else if (*uPtrs[uIdx] < *lowerLimit) {

 /* Lower limit is reached. */

 mode[iOutput] = LowerLimitEquation;

 } else {

 /* Output is not limited. */

 mode[iOutput] = NonLimitEquation;

 }

 /* Adjust indices to give scalar expansion. */

 uIdx += uInc;

 upperLimit += upperLimitInc;

 lowerLimit += lowerLimitInc;

 }

 /* Reset index to input and limits. */

 uIdx = 0;

 upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

 lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

 } /* end IsMajorTimeStep */

Output calculations in mdlOutputs are done based on the values stored in the mode
vector.

8-46

 Zero Crossings

for (iOutput = 0; iOutput < numOutput; iOutput++) {

 if (mode[iOutput] == UpperLimitEquation) {

 /* Output upper limit. */

 *y++ = *upperLimit;

 } else if (mode[iOutput] == LowerLimitEquation) {

 /* Output lower limit. */

 *y++ = *lowerLimit;

 } else {

 /* Output is equal to input */

 *y++ = *uPtrs[uIdx];

 }

After outputs are calculated, the Simulink engine calls mdlZeroCrossings to determine
if a zero crossing has occurred. A zero crossing is detected if any element of the
continuous zero-crossing vector switches from negative to positive, or positive to negative.
If this occurs, the simulation modifies the step size and recalculates the outputs to try
to locate the exact zero crossing. For this example, the values for the continuous zero-
crossing vectors are calculated as shown below.
static void mdlZeroCrossings(SimStruct *S)

{

 int_T iOutput;

 int_T numOutput = ssGetOutputPortWidth(S,0);

 real_T *zcSignals = ssGetNonsampledZCs(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /* Set index and increment for the input signal, upper limit, and lower

 * limit parameters so that each gives scalar expansion if needed. */

 int_T uIdx = 0;

 int_T uInc = (ssGetInputPortWidth(S,0) > 1);

 const real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

 int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

 const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

 int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

 /*Check if the input has crossed an upper or lower limit */

 for (iOutput = 0; iOutput < numOutput; iOutput++) {

 zcSignals[2*iOutput] = *uPtrs[uIdx] - *upperLimit;

 zcSignals[2*iOutput+1] = *uPtrs[uIdx] - *lowerLimit;

 /* Adjust indices to give scalar expansion if needed */

 uIdx += uInc;

 upperLimit += upperLimitInc;

 lowerLimit += lowerLimitInc;

 }

}

8-47

8 Implementing Block Features

S-Function Compliance with the SimState

In this section...

“SimState Compliance Specification for Level-2 MATLAB S-Functions” on page
8-48
“SimState Compliance Specification for C-MEX S-Functions” on page 8-49

SimState Compliance Specification for Level-2 MATLAB S-Functions

For the default SimState compliance setting, Simulink saves and restores the following
data for a block:

• Continuous state values
• Values stored in non-scratch DWork vectors (this includes IWork, RWork and Mode

DWorks)
• Values of Zero Crossing signals

In order for a Level-2 MATLAB S-function to work with the SimState feature, you must
specify the simStateCompliance of the block using the method,

block.simStateCompliance = setting

where the permissible setting values are:

Setting Result

'UnknownSimState' This default setting instructs Simulink to use the DefaultSimState to
save and restore the SimState and issues a warning.

'DefaultSimState' This setting instructs Simulink to treat the S-function like a built-in block
when saving and restoring the SimState.

'HasNoSimState' This setting informs Simulink that the S-function does not have any
simulation state. With this setting, no state information is saved for the
block. This setting is primarily useful for "sink" blocks (i.e., blocks with no
output ports) that use PWorks or DWorks to store handles to files or figure
windows.

Note: This setting is not allowed if the S-function registers any discrete or
continuous states or zero crossing signals.

8-48

 S-Function Compliance with the SimState

Setting Result

'CustomSimState' This setting informs Simulink that the S-function has custom
GetSimState and SetSimState methods.

'DisallowSimState' This setting informs Simulink that the S-function does not allow saving or
restoring its simulation state. Simulink reports an error if you save and
restore the SimState of the model that contains this S-function.

For an S-function with custom methods ('CustomSimState'), you can use the following
statements to respectively get and set the SimState:

function outSS = GetSimState(block)

function SetSimState(block, inSS)

For an example of how to implement these custom methods, see msfcn_varpulse.m.

SimState Compliance Specification for C-MEX S-Functions

As with the MATLAB S-function, your C-MEX S-function code must inform Simulink of
the S-function compliance with the SimState feature. You can accomplish this task by
using the S-function API, ssSetSimStateCompliance.

In most cases, specifying the compliance to be default is sufficient to save and restore the
necessary state data. To specify the default compliance, add this line:

ssSetSimStateCompliance(S, USE_DEFAULT_SIM_STATE).

The options are as follows:

Setting Result

SIM_STATE_COMPLIANCE_UNKNOWN This is the default setting for all S-functions. For S-functions
that do not use PWorks, Simulink saves and restores the
default simulation state (see next option) and issues a
warning to inform the user of this assumption. On the other
hand, Simulink reports an error during the save and restore
if it encounters an S-function that uses PWorks.

USE_DEFAULT_SIM_STATE This setting instructs Simulink to treat the S-function like a
built-in block when saving and restoring the SimState.

8-49

8 Implementing Block Features

Setting Result

HAS_NO_SIM_STATE This setting informs Simulink that the S-function does
not have any simulation state. With this setting, no state
information is saved for this block. This setting is primarily
useful for "sink" blocks (i.e., blocks with no output ports)
that use PWorks or DWorks to store handles to files or figure
windows.

Note: This setting is not allowed if the S-function registers
any discrete or continuous states or zero crossing signals.

DISALLOW_SIM_STATE This setting informs Simulink that the S-function does not
allow the saving or restoring of its simulation state. Simulink
reports an error if you save and restore the SimState of the
model that contains this S-function.

USE_CUSTOM_SIM_STATE This setting informs Simulink that the S-function has
mdlGetSimState and mdlSetSimState methods.

For S-functions that use PWork vectors or static variables to hold data that Simulink
updates during simulation, the S-function must use the custom mdlGetSimState and
mdlSetSimState methods. The following statements demonstrate the proper format.

mxArray* mdlGetSimState(SimStruct* S)

void mdlSetSimState(SimStruct* S, const mxArray* inSS)

For an example of how to implement these methods, see sfun_simstate.c.

8-50

 Matrices in C S-Functions

Matrices in C S-Functions

In this section...

“MX Array Manipulation” on page 8-51
“Memory Allocation” on page 8-51

MX Array Manipulation

S-functions can manipulate mxArrays using the standard MATLAB API functions. (See
“C/C++ Matrix Library API” (MATLAB) for a list of functions.) In general, if your S-
function is declared exception free by passing the SS_OPTION_EXCEPTION_FREE_CODE
option to ssSetOptions (see Exception Free Code in “Error Handling” on page 8-59),
it should avoid MATLAB API functions that throw exceptions (i.e., long jump), such as
mxCreateDoubleMatrix. Otherwise, the S-function can use any of the listed functions.

If you have Simulink Coder, it supports a subset of the mxArray manipulation functions
when generating noninlined code for an S-function. For a list of supported functions, see
“Write Noninlined S-Function and TLC Files” (Simulink Coder).

Calls to the macro ssGetSFcnParam return a pointer to an mxArray, which can be
used with the mxArray manipulation functions. If your S-function contains S-function
parameters, use the mxArray manipulation functions in the mdlCheckParameters
method to check the S-function parameter values. See the S-function sfun_runtime3.c
for an example

In this S-function, the following lines check that the first S-function parameter is a
character array with a length greater than or equal to two.
if (!mxIsChar(ssGetSFcnParam(S, 0)) ||

 (nu=mxGetNumberOfElements(ssGetSFcnParam(S, 0))) < 2) {

 ssSetErrorStatus(S,"1st parameter to S-function must be a "

 "string of at least 2 '+' and '-' characters");

 return;

}

Memory Allocation

When you create an S-function, you might need to allocate memory for each instance
of your S-function. The standard MATLAB API memory allocation routines mxCalloc
and mxFree should not be used with C MEX S-functions, because these routines are

8-51

8 Implementing Block Features

designed to be used with MEX files that are called from the MATLAB environment and
not the Simulink environment. The correct approach for allocating memory is to use the
stdlib.h library routines calloc and free. In mdlStart, allocate and initialize the
memory

UD *ptr = (UD *)calloc(1,sizeof(UD));

where UD, in this example, is a data structure defined at the beginning of the S-function.
Then, place the pointer to it either in the pointer work vector

ssSetPWorkValue(S, 0, ptr);

or attach it as user data.

ssSetUserData(S,ptr);

In mdlTerminate, free the allocated memory. For example, if the pointer was stored in
the user data

UD *ptr = ssGetUserData(S);

free(ptr);

8-52

 Function-Call Subsystems and S-Functions

Function-Call Subsystems and S-Functions

You can create a triggered subsystem whose execution is determined by logic internal
to a C MEX S-function instead of by the value of a signal. A subsystem so configured is
called a function-call subsystem. You cannot trigger a function-call subsystem from a
Level-2 MATLAB S-function. To implement a function-call subsystem:

• In the Trigger block, select function-call as the Trigger type parameter.
• In the S-function, use the ssEnableSystemWithTid and

ssDisableSystemWithTid to enable or disable the triggered subsystem and the
ssCallSystemWithTid macro to call the triggered subsystem.

• In the model, connect the S-Function block output directly to the trigger port.

Note Function-call connections can only be performed on the first output port.

Function-call subsystems are not executed directly by the Simulink engine; rather, the
S-function determines when to execute the subsystem. When the subsystem completes
execution, control returns to the S-function. This figure illustrates the interaction
between a function-call subsystem and an S-function.

In this figure, ssCallSystemWithTid executes the function-call subsystem that is
connected to the first output port element. ssCallSystemWithTid returns 0 if an error
occurs while executing the function-call subsystem or if the output is unconnected. After
the function-call subsystem executes, control is returned to your S-function.

Function-call subsystems can only be connected to S-functions that have been properly
configured to accept them.

To configure an S-function to call a function-call subsystem:

8-53

8 Implementing Block Features

• In mdlInitializeSizes, set the data type of the S-function first output port to
function-call by specifying

ssSetOutputPortDataType(S, 0, SS_FCN_CALL);

• Specify the elements that are to execute the function-call subsystem in
mdlInitializeSampleTimes. For example:

ssSetCallSystemOutput(S,0); /* call on first element */

ssSetCallSystemOutput(S,1); /* call on second element */

• Specify in mdlInitializeSampleTimes whether you want the S-function to be
able to enable or disable the function-call subsystem. Only S-functions that explicitly
enable and disable the function-call subsystem can reset the states and outputs of
the subsystem, as determined by the function-call subsystem's Trigger and Outport
blocks. For example, the code

ssSetExplicitFCSSCtrl(S, 1);

in mdlInitializeSampleTimes specifies that the S-function can enable
and disable the function-call subsystem. In this case, the S-function must
invoke ssEnableSystemWithTid before executing the subsystem using
ssCallSystemWithTid.

• Execute the subsystem in the appropriate mdlOutputs or mdlUpdate S-function
routine. For example:

static void mdlOutputs(...)

{

 if (((int)*uPtrs[0]) % 2 == 1) {

 if (!ssCallSystemWithTid(S,0,tid)) {

 /* Error occurred, which will be reported by */

 /*the Simulink engine*/

 return;

 }

 } else {

 if (!ssCallSystemWithTid(S,1,tid)) {

 /* Error occurred, which will be reported by */

 /*the Simulink engine*/

 return;

 }

 }

 ...

}

8-54

 Function-Call Subsystems and S-Functions

See sfun_fcncall.c for an example that executes a function-call subsystem on the
first and second elements of the first S-function output. The following Simulink model
(sfcndemo_sfun_fcncall) uses this S-function.

The first function-call subsystem provides a sine wave output. The second function-call
subsystem is a simple feedback loop containing a Unit Delay block.

8-55

8 Implementing Block Features

When the Pulse Generator emits its upper value, the function-call subsystem connected
to the first element of the first S-function output port is triggered. Similarly, when the
Pulse Generator emits its lower value, the function-call subsystem connected to the
second element is triggered. The simulation output is shown on the following Scope.

8-56

 Function-Call Subsystems and S-Functions

Function-call subsystems are a powerful modeling construct. You can configure
Stateflow® blocks to execute function-call subsystems, thereby extending the capabilities
of the blocks. For more information, see the Stateflow documentation.

8-57

8 Implementing Block Features

Sim Viewing Devices in External Mode

A sim viewing device encapsulates processing and viewing of signals received from the
target system in external mode. During simulation in external mode, the target system
uploads the appropriate input values to the sim viewing device in the Simulink model.
The sim viewing device then conditions the input signals as needed and renders the
signals on the screen. A sim viewing device runs only on the host, generating no code in
the target system and, therefore, allowing extra processing of displayed signals without
burdening the generated code.

You can use your S-function as a sim viewing device in external mode if it satisfies the
following conditions.

• The S-function has no output ports.
• The S-function contains no states.
• The generated code does not require the conditioned signals produced by the S-

function.

To specify a C MEX S-function as a sim viewing device, set the
SS_OPTION_SIM_VIEWING_DEVICE option in the mdlInitializeSizes function. For
example

 ssSetOptions(S, SS_OPTION_SIM_VIEWING_DEVICE);

To specify a Level-2 MATLAB S-function as a sim viewing device, call the run-time
object's SetSimViewingDevice method in the S-function setup callback method.

When simulating a model in Rapid Accelerator mode, signal logging or a To Workspace
block connected to the sim viewing device will not log any data.

External mode compatible S-functions are selected, and the trigger is armed, by using
the External Signal & Triggering dialog box. For more information see “What You Can
Do with a Host/Target Communication Channel” (Simulink Coder) in the Simulink Coder
documentation.

8-58

 Error Handling

Error Handling

In this section...

“About Handling Errors” on page 8-59
“Exception Free Code” on page 8-60
“ssSetErrorStatus Termination Criteria” on page 8-61
“Checking Array Bounds” on page 8-61

About Handling Errors

When working with S-functions, it is important to handle unexpected events such as
invalid parameter values correctly.

If your C MEX S-function has parameters whose contents you need to validate, use the
following technique to report errors.

ssSetErrorStatus(S,"Error encountered due to ...");

return;

In most cases, the Simulink engine displays errors in the Diagnostic Viewer. If the error
is encountered in mdlCheckParameters as the S-function parameters are being entered
into the block dialog, the engine opens the error dialog shown below. In either case,
the engine displays the error message along with the name of the S-function and the
associated S-function block that invoked the error.

The second argument to ssSetErrorStatus must be persistent memory. It cannot be a
local variable in your function. For example, the following causes unpredictable errors.

mdlOutputs()

{

8-59

8 Implementing Block Features

 char msg[256]; /* ILLEGAL: should be "static char */

 /*msg[256];"*/

 sprintf(msg,"Error due to %s", string);

 ssSetErrorStatus(S,msg);

 return;

}

Because ssSetErrorStatus does not generate exceptions, using it to report errors in
your S-function is preferable to using mexErrMsgTxt. The mexErrMsgTxt function uses
exception handling to terminate S-function execution. To support exception handling in
S-functions, the Simulink engine must set up exception handlers prior to each S-function
invocation. This introduces overhead into simulation.

Exception Free Code

You can avoid simulation overhead by ensuring that your C MEX S-function contains
entirely exception free code. Exception free code refers to code that never long-jumps.
Your S-function is not exception free if it contains any routine that, when called, has the
potential of long-jumping. For example, mexErrMsgTxt throws an exception (i.e., long-
jumps) when called, thus ending execution of your S-function. Using mxCalloc can cause
unpredictable results in the event of a memory allocation error, because mxCalloc long-
jumps. If memory allocation is needed, use the stdlib.h calloc routine directly and
perform your own error handling.

If you do not call mexErrMsgTxt or other API routines that cause exceptions, use the
SS_OPTION_EXCEPTION_FREE_CODE S-function option. You do this by issuing the
following command in the mdlInitializeSizes function.

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

Setting this option increases the performance of your S-function by allowing the
Simulink engine to bypass the exception-handling setup that is usually performed prior
to each S-function invocation. You must take extreme care to verify that your code is
exception free when using SS_OPTION_EXCEPTION_FREE_CODE. If your S-function
generates an exception when this option is set, unpredictable results occur.

All mex* routines have the potential of long-jumping. Several mx* routines also have
the potential of long-jumping. To avoid any difficulties, use only the API routines that
retrieve a pointer or determine the size of parameters. For example, the following API
routines never throw an exception: mxGetPr, mxGetData, mxGetNumberOfDimensions,
mxGetM, mxGetN, and mxGetNumberOfElements.

8-60

 Error Handling

Code in run-time routines can also throw exceptions. Run-time routines refer to certain S-
function routines that the engine calls during the simulation loop (see “Simulink Engine
Interaction with C S-Functions” on page 4-67). The run-time routines include

• mdlGetTimeOfNextVarHit

• mdlOutputs

• mdlUpdate

• mdlDerivatives

If all run-time routines within your S-function are exception free, you can use this option:

ssSetOptions(S, SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE);

The other routines in your S-function do not have to be exception free.

ssSetErrorStatus Termination Criteria

If one of your C MEX S-function callback methods invokes ssSetErrorStatus during a
simulation, the Simulink engine posts the error and terminates the simulation as soon as
the callback method returns. If your S-function SS_OPTION_CALL_TERMINATE_ON_EXIT
option is enabled (see ssSetOptions), The engine invokes your S-function
mdlTerminate method as part of the termination process. Otherwise, the engine invokes
your S-function mdlTerminate method only if at least one block mdlStart method has
executed without error during the simulation.

Checking Array Bounds

If your C MEX S-function causes otherwise inexplicable errors, the reason might be
that the S-function is writing beyond its assigned areas in memory. You can verify this
possibility by enabling the array bounds checking feature. This feature detects any
attempt by an S-Function block to write beyond the areas assigned to it for the following
types of block data:

• Work vectors (R, I, P, D, and mode)
• States (continuous and discrete)
• Outputs

To enable array bounds checking, select warning or error from the options list
Configuration Parameters > All Parameters > Array bounds exceeded.
Alternatively, enter the following command at the MATLAB command prompt.

8-61

8 Implementing Block Features

set_param(modelName, 'ArrayBoundsChecking', ValueStr)

where modelName is the name of the Simulink model and ValueStr is either 'none',
'warning', or 'error'.

8-62

 C MEX S-Function Examples

C MEX S-Function Examples

In this section...

“About S-Function Examples” on page 8-63
“Continuous States” on page 8-63
“Discrete States” on page 8-68
“Continuous and Discrete States” on page 8-74
“Variable Sample Time” on page 8-79
“Array Inputs and Outputs” on page 8-84
“Zero-Crossing Detection” on page 8-93
“Discontinuities in Continuous States” on page 8-106

About S-Function Examples

All examples are based on the C MEX S-function templates sfuntmpl_basic.c and
sfuntmpl_doc.c. Open sfuntmpl_doc.c. for a detailed discussion of the S-function
template.

Continuous States

The csfunc.c example shows how to model a continuous system with states using a C
MEX S-function. The following Simulink model uses this S-function.

sfcndemo_csfunc

In continuous state integration, the Simulink solvers integrate a set of continuous states
using the following equations.

8-63

8 Implementing Block Features

S-functions that contain continuous states implement a state-space equation. The
mdlOutputs method contains the output portion and mdlDerivatives method contains
the derivative portion of the state-space equation. To visualize how the integration
works, see the flowchart in “Simulink Engine Interaction with C S-Functions” on page
4-67. The output equation corresponds to the mdlOutputs in the major time step.
Next, the example enters the integration section of the flowchart. Here the Simulink
engine performs a number of minor time steps during which it calls mdlOutputs and
mdlDerivatives. Each of these pairs of calls is referred to as an integration stage. The
integration returns with the continuous states updated and the simulation time moved
forward. Time is moved forward as far as possible, providing that error tolerances in the
state are met. The maximum time step is subject to constraints of discrete events such as
the actual simulation stop time and the user-imposed limit.

The csfunc.c example specifies that the input port has direct feedthrough. This is
because matrix D is initialized to a nonzero matrix. If D is set equal to a zero matrix in
the state-space representation, the input signal is not used in mdlOutputs. In this case,
the direct feedthrough can be set to 0, which indicates that csfunc.c does not require
the input signal when executing mdlOutputs.

matlabroot/toolbox/simulink/simdemos/simfeatures/src/csfunc.c

The S-function csfunc.c begins with #define statements for the S-function name and
level, and a #include statement for the simstruc.h header. After these statements,
the S-function can include or define any other necessary headers, data, etc. The
csfunc.c example defines the variable U as a pointer to the first input port's signal and
initializes static variables for the state-space matrices.
/* File : csfunc.c

 * Abstract:

 *

 * Example C S-function for defining a continuous system.

 *

 * x' = Ax + Bu

 * y = Cx + Du

 *

 * For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

 *

 * Copyright 1990-2013 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME csfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -0.09, -0.01 } ,

 { 1 , 0 }

8-64

 C MEX S-Function Examples

 };

static real_T B[2][2]={ { 1 , -7 } ,

 { 0 , -2 }

 };

static real_T C[2][2]={ { 0 , 2 } ,

 { 1 , -5 }

 };

static real_T D[2][2]={ { -3 , 0 } ,

 { 1 , 0 }

 };

The required S-function method mdlInitializeSizes then sets up the following S-
function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified parameters does not
match the number returned by ssGetNumSFcnParams, the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes sets the
number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. This example has two continuous states and
zero discrete states.

• Next, the method configures the S-function to have a single input and output port,
each with a width of two to match the dimensions of the state-space matrices. The
method passes a value of 1 to ssSetInputPortDirectFeedThrough to indicate the
input port has direct feedthrough.

• ssSetNumSampleTimes initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value of 0 to
ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because zero is the
default value for all of these macros. However, for clarity, the S-function explicitly
sets the number of work vectors.

• Lastly, ssSetOptions sets any applicable options. In this case, the only option is
SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that the code is exception
free.

The mdlInitializeSizes function for this example is shown below.

/*====================*

8-65

8 Implementing Block Features

 * S-function methods *

 ====================/

/* Function: mdlInitializeSizes ===

 * Abstract:

 * Determine the S-function block's characteristics:

 * number of inputs, outputs, states, etc.

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

 ssSetNumContStates(S, 2);

 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 2);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, 2);

 ssSetNumSampleTimes(S, 1);

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies the
S-function sample rates. The value CONTINUOUS_SAMPLE_TIME passed to the
ssSetSampleTime macro specifies that the first S-function sample rate be continuous.
ssSetOffsetTime then specifies an offset time of zero for this sample rate. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can inherit their
sample times from the parent model.
/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * Specify that we have a continuous sample time.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

8-66

 C MEX S-Function Examples

}

The optional S-function method mdlInitializeConditions initializes the continuous
state vector. The #define statement before this method is required for the Simulink
engine to call this function. In the example below, ssGetContStates obtains a pointer
to the continuous state vector. The for loop then initializes each state to zero.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

 * Abstract:

 * Initialize both continuous states to zero.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *x0 = ssGetContStates(S);

 int_T lp;

 for (lp=0;lp<2;lp++) {

 *x0++=0.0;

 }

}

The required mdlOutputs function computes the output signal of this S-function. The
beginning of the function obtains pointers to the first output port, continuous states, and
first input port. The S-function uses the data in these arrays to solve the output equation
y=Cx+Du.
/* Function: mdlOutputs ===

 * Abstract:

 * y = Cx + Du

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x = ssGetContStates(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* y=Cx+Du */

 y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

 y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

The mdlDerivatives function calculates the continuous state derivatives. Because
this function is an optional method, a #define statement must precede the function.
The beginning of the function obtains pointers to the S-function continuous states, state
derivatives, and first input port. The S-function uses this data to solve the equation
dx=Ax+Bu.
#define MDL_DERIVATIVES

8-67

8 Implementing Block Features

/* Function: mdlDerivatives ===

 * Abstract:

 * xdot = Ax + Bu

 */

static void mdlDerivatives(SimStruct *S)

{

 real_T *dx = ssGetdX(S);

 real_T *x = ssGetContStates(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /* xdot=Ax+Bu */

 dx[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

 dx[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

}

The required mdlTerminate function performs any actions, such as freeing memory,
necessary at the end of the simulation. In this example, the function is empty.
/* Function: mdlTerminate ===

 * Abstract:

 * No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

 UNUSED_ARG(S); /* unused input argument */

}

The required S-function trailer includes the files necessary for simulation or code
generation, as follows.
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG macro to
indicate that an input argument the callback requires is not used. This optional macro
is defined in simstruc_types.h. If used, you must call this macro once for each input
argument that a callback does not use.

Discrete States

The dsfunc.c example shows how to model a discrete system in a C MEX S-function.
The following Simulink model uses this S-function.

sfcndemo_dsfunc

8-68

 C MEX S-Function Examples

Discrete systems can be modeled by the following set of equations.

The dsfunc.c example implements a discrete state-space equation. The mdlOutputs
method contains the output portion and the mdlUpdate method contains the update
portion of the discrete state-space equation. To visualize how the simulation works,
see the flowchart in “Simulink Engine Interaction with C S-Functions” on page 4-67.
The output equation above corresponds to the mdlOutputs in the major time step. The
preceding update equation corresponds to the mdlUpdate in the major time step. If your
model does not contain continuous elements, the Simulink engine skips the integration
phase and time is moved forward to the next discrete sample hit.

matlabroot/toolbox/simulink/simdemos/simfeatures/src/dsfunc.c

The S-function dsfunc.c begins with #define statements for the S-function name
and level, along with a #include statement for the simstruc.h header. After these
statements, the S-function can include or define any other necessary headers, data,
etc. The dsfunc.c example defines U as a pointer to the first input port's signal and
initializes static variables for the state-space matrices.
/* File : dsfunc.c

 * Abstract:

 *

 * Example C S-function for defining a discrete system.

 *

 * x(n+1) = Ax(n) + Bu(n)

 * y(n) = Cx(n) + Du(n)

 *

 * For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

 *

 * Copyright 1990-2013 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME dsfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

8-69

8 Implementing Block Features

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -1.3839, -0.5097 } ,

 { 1 , 0 }

 };

static real_T B[2][2]={ { -2.5559, 0 } ,

 { 0 , 4.2382 }

 };

static real_T C[2][2]={ { 0 , 2.0761 } ,

 { 0 , 7.7891 }

 };

static real_T D[2][2]={ { -0.8141, -2.9334 } ,

 { 1.2426, 0 }

 };

The required S-function method mdlInitializeSizes then sets up the following S-
function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified parameters does not
match the number returned by ssGetNumSFcnParams, the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets the
number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. This example has zero continuous states and
two discrete states.

• Next, the method configures the S-function to have a single input and output port,
each with a width of two to match the dimensions of the state-space matrices. The
method passes a value of 1 to ssSetInputPortDirectFeedThrough to indicate the
input port has direct feedthrough.

• ssSetNumSampleTimes initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value of 0 to
ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because zero is the
default value for all of these macros. However, for clarity, the S-function explicitly
sets the number of work vectors.

• Lastly, ssSetOptions sets any applicable options. In this case, the only option is
SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that the code is exception
free.

8-70

 C MEX S-Function Examples

The mdlInitializeSizes function for this example is shown below.
/*====================*

 * S-function methods *

 ====================/

/* Function: mdlInitializeSizes ===

 * Abstract:

 * Determine the S-function block's characteristics:

 * number of inputs, outputs, states, etc.

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 2);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 2);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, 2);

 ssSetNumSampleTimes(S, 1);

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies the S-function
sample rates. A call to ssSetSampleTime sets this first S-function sample period to 1.0.
ssSetOffsetTime then specifies an offset time of zero for the first sample rate. The call
to ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can inherit their
sample times from the parent model.
/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * Specify a sample time 0f 1.0.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, 1.0);

8-71

8 Implementing Block Features

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes the discrete
state vector. The #define statement before this method is required for the Simulink
engine to call this function. In the example below, ssGetRealDiscStates obtains a
pointer to the discrete state vector. The for loop then initializes each discrete state to
one.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

 * Abstract:

 * Initialize both discrete states to one.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *x0 = ssGetRealDiscStates(S);

 int_T lp;

 for (lp=0;lp<2;lp++) {

 *x0++=1.0;

 }

}

The required mdlOutputs function computes the output signal of this S-function. The
beginning of the function obtains pointers to the first output port, discrete states, and
first input port. The S-function uses the data in these arrays to solve the output equation
y=Cx+Du.
/* Function: mdlOutputs ===

 * Abstract:

 * y = Cx + Du

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x = ssGetRealDiscStates(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* y=Cx+Du */

 y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

 y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

The Simulink engine calls the mdlUpdate function once every major integration time
step to update the discrete states' values. Because this function is an optional method,
a #define statement must precede the function. The beginning of the function obtains
pointers to the S-function discrete states and first input port. The S-function uses the

8-72

 C MEX S-Function Examples

data in these arrays to solve the equation dx=Ax+Bu, which is stored in the temporary
variable tempX before being assigned into the discrete state vector x.
#define MDL_UPDATE

/* Function: mdlUpdate ==

 * Abstract:

 * xdot = Ax + Bu

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 real_T tempX[2] = {0.0, 0.0};

 real_T *x = ssGetRealDiscStates(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* xdot=Ax+Bu */

 tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

 tempX[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

 x[0]=tempX[0];

 x[1]=tempX[1];

}

The required mdlTerminate function performs any actions, such as freeing memory,
necessary at the end of the simulation. In this example, the function is empty.
/* Function: mdlTerminate ===

 * Abstract:

 * No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

 UNUSED_ARG(S); /* unused input argument */

}

The required S-function trailer includes the files necessary for simulation or code
generation, as follows.
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG macro to
indicate that an input argument the callback requires is not used. This optional macro
is defined in simstruc_types.h. If used, you must call this macro once for each input
argument that a callback does not use.

8-73

8 Implementing Block Features

Continuous and Discrete States

The mixedm.c example shows a hybrid (a combination of continuous and discrete states)
system. The mixedm.c example combines elements of csfunc.c and dsfunc.c. The
following Simulink model uses this S-function.

sfcndemo_mixedm

If you have a hybrid system, the mdlDerivatives method calculates the derivatives
of the continuous states of the state vector, x, and the mdlUpdate method contains
the equations used to update the discrete state vector, xD. The mdlOutputs method
computes the S-function outputs after checking for sample hits to determine at what
point the S-function is being called.

In Simulink block diagram form, the S-function mixedm.c looks like

which implements a continuous integrator followed by a discrete unit delay.

matlabroot/toolbox/simulink/simdemos/simfeatures/src/mixedm.c

The S-function mixedm.c begins with #define statements for the S-function name
and level, along with a #include statement for the simstruc.h header. After these
statements, the S-function can include or define any other necessary headers, data, etc.
The mixedm.c example defines U as a pointer to the first input port's signal.
/* File : mixedm.c

 * Abstract:

 *

 * An example S-function illustrating multiple sample times by implementing

 * integrator -> ZOH(Ts=1second) -> UnitDelay(Ts=1second)

 * with an initial condition of 1.

 * (e.g. an integrator followed by unit delay operation).

 *

 * For more details about S-functions, see simulink/src/sfuntmpl_doc.c

 *

 * Copyright 1990-2007 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME mixedm

#define S_FUNCTION_LEVEL 2

8-74

 C MEX S-Function Examples

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

The required S-function method mdlInitializeSizes then sets up the following S-
function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified parameters does not
match the number returned by ssGetNumSFcnParams, the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets the
number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. This example has one continuous state and one
discrete state.

• The S-function initializes one floating-point work vector by passing a value of 1 to
ssSetNumRWork. No other work vectors are initialized.

• Next, the method uses ssSetNumInputPorts and ssSetNumOutputPorts to
configure the S-function to have a single input and output port, each with a width of
one. The method passes a value of 1 to ssSetInputPortDirectFeedThrough to
indicate the input port has direct feedthrough.

• This S-function assigns sample times using a hybrid block-based and port-based
method. The macro ssSetNumSampleTimes initializes two block-based sample
times, which the mdlInitializeSampleTimes function configures later. The
macros ssSetInputPortSampleTime and ssSetInputPortOffsetTime initialize
the input port to have a continuous sample time with an offset of zero. Similarly,
ssSetOutputPortSampleTime and ssSetOutputPortOffsetTime initialize the
output port sample time to 1 with an offset of zero.

• Lastly, ssSetOptions sets two S-function options.
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free and
SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED indicates a combination of block-based
and port-based sample times.

The mdlInitializeSizes function for this example is shown below.
====================

 * S-function methods *

 ====================/

/* Function: mdlInitializeSizes ===

8-75

8 Implementing Block Features

 * Abstract:

 * Determine the S-function block's characteristics:

 * number of inputs, outputs, states, etc.

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

 ssSetNumContStates(S, 1);

 ssSetNumDiscStates(S, 1);

 ssSetNumRWork(S, 1); /* for zoh output feeding the delay operator */

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 1);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 ssSetInputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetInputPortOffsetTime(S, 0, 0.0);

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, 1);

 ssSetOutputPortSampleTime(S, 0, 1.0);

 ssSetOutputPortOffsetTime(S, 0, 0.0);

 ssSetNumSampleTimes(S, 2);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c. */

 ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

 SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the S-
function block-based sample rates. The first call to ssSetSampleTime specifies that
the first sample rate is continuous, with the subsequent call to ssSetOffsetTime
setting the offset to zero. The second call to this pair of macros sets the second
sample time to 1 with an offset of zero. The S-function port-based sample times set in
mdlInitializeSizes must all be registered as a block-based sample time. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can inherit their
sample times from the parent model.
/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * Two tasks: One continuous, one with discrete sample time of 1.0.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

8-76

 C MEX S-Function Examples

 ssSetSampleTime(S, 1, 1.0);

 ssSetOffsetTime(S, 1, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

The optional S-function method mdlInitializeConditions initializes the continuous
and discrete state vectors. The #define statement before this method is required for
the Simulink engine to call this function. In this example, ssGetContStates obtains a
pointer to the continuous state vector and ssGetRealDiscStates obtains a pointer to
the discrete state vector. The method then sets all states' initial conditions to one.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

 * Abstract:

 * Initialize both continuous states to one.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *xC0 = ssGetContStates(S);

 real_T *xD0 = ssGetRealDiscStates(S);

 xC0[0] = 1.0;

 xD0[0] = 1.0;

} /* end mdlInitializeConditions */

The required mdlOutputs function performs computations based on the current task.
The macro ssIsContinuousTask checks if the continuous task is executing. If this
macro returns true, ssIsSpecialSampleHit then checks if the discrete sample rate is
also executing. If this macro also returns true, the method sets the value of the floating-
point work vector to the current value of the continuous state, via pointers obtained
using ssGetRWork and ssGetContStates, respectively. The mdlUpdate method later
uses the floating-point work vector as the input to the zero-order hold. Updating the work
vector in mdlOutputs ensures that the correct values are available during subsequent
calls to mdlUpdate. Finally, if the S-function is running at its discrete rate, i.e., the call
to ssIsSampleHit returns true, the method sets the output to the value of the discrete
state.
/* Function: mdlOutputs ===

 * Abstract:

 * y = xD, and update the zoh internal output.

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 /* update the internal "zoh" output */

 if (ssIsContinuousTask(S, tid)) {

 if (ssIsSpecialSampleHit(S, 1, 0, tid)) {

 real_T *zoh = ssGetRWork(S);

8-77

8 Implementing Block Features

 real_T *xC = ssGetContStates(S);

 *zoh = *xC;

 }

 }

 /* y=xD */

 if (ssIsSampleHit(S, 1, tid)) {

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *xD = ssGetRealDiscStates(S);

 y[0]=xD[0];

 }

} /* end mdlOutputs */

The Simulink engine calls the mdlUpdate function once every major integration time
step to update the discrete states' values. Because this function is an optional method,
a #define statement must precede the function. The call to ssIsSampleHit ensures
the body of the method is executed only when the S-function is operating at its discrete
rate. If ssIsSampleHit returns true, the method obtains pointers to the S-function
discrete state and floating-point work vector and updates the discrete state's value using
the value stored in the work vector.
#define MDL_UPDATE

/* Function: mdlUpdate ==

 * Abstract:

 * xD = xC

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /* xD=xC */

 if (ssIsSampleHit(S, 1, tid)) {

 real_T *xD = ssGetRealDiscStates(S);

 real_T *zoh = ssGetRWork(S);

 xD[0]=*zoh;

 }

} /* end mdlUpdate */

The mdlDerivatives function calculates the continuous state derivatives. Because this
function is an optional method, a #define statement must precede the function. The
function obtains pointers to the S-function continuous state derivative and first input
port then sets the continuous state derivative equal to the value of the first input.
#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

 * Abstract:

 * xdot = U

 */

static void mdlDerivatives(SimStruct *S)

8-78

 C MEX S-Function Examples

{

 real_T *dx = ssGetdX(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /* xdot=U */

 dx[0]=U(0);

} /* end mdlDerivatives */

The required mdlTerminate function performs any actions, such as freeing memory,
necessary at the end of the simulation. In this example, the function is empty.
/* Function: mdlTerminate ===

 * Abstract:

 * No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

 UNUSED_ARG(S); /* unused input argument */

}

The S-function trailer includes the files necessary for simulation or code generation, as
follows.
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlUpdate and mdlTerminate functions use the UNUSED_ARG macro to
indicate that an input argument the callback requires is not used. This optional macro
is defined in simstruc_types.h. If used, you must call this macro once for each input
argument that a callback does not use.

Variable Sample Time

The example S-function vsfunc.c uses a variable-step sample time. The following
Simulink model uses this S-function.

sfcndemo_vsfunc

Variable step-size functions require a call to mdlGetTimeOfNextVarHit, which is
an S-function routine that calculates the time of the next sample hit. S-functions that
use the variable-step sample time can be used only with variable-step solvers. The

8-79

8 Implementing Block Features

vsfunc.c example is a discrete S-function that delays its first input by an amount of
time determined by the second input.

The vsfunc.c example outputs the input u delayed by a variable amount of time.
mdlOutputs sets the output y equal to state x. mdlUpdate sets the state vector x equal
to u, the input vector. This example calls mdlGetTimeOfNextVarHit to calculate and
set the time of the next sample hit, that is, the time when vsfunc.c is next called. In
mdlGetTimeOfNextVarHit, the macro ssGetInputPortRealSignalPtrs gets a
pointer to the input u. Then this call is made:

ssSetTNext(S, ssGetT(S) + U(1));

The macro ssGetT gets the simulation time t. The second input to the block, U(1), is
added to t, and the macro ssSetTNext sets the time of the next hit equal to t+U(1),
delaying the output by the amount of time set in (U(1)).

matlabroot/toolbox/simulink/simdemos/simfeatures/src/vsfunc.c

The S-function vsfunc.c begins with #define statements for the S-function name
and level, along with a #include statement for the simstruc.h header. After these
statements, the S-function can include or define any other necessary headers, data, etc.
The vsfunc.c example defines U as a pointer to the first input port's signal.
/* File : vsfunc.c

 * Abstract:

 *

 * Variable step S-function example.

 * This example S-function illustrates how to create a variable step

 * block. This block implements a variable step delay

 * in which the first input is delayed by an amount of time determined

 * by the second input:

 *

 * dt = u(2)

 * y(t+dt) = u(t)

 *

 * For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

 *

 * Copyright 1990-2007 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME vsfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

The required S-function method mdlInitializeSizes then sets up the following S-
function characteristics.

8-80

 C MEX S-Function Examples

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
zero.

• ssGetSFcnParamsCount determines how many parameters the user actually
entered into the S-function dialog. If the number of user-specified parameters does not
match the number returned by ssGetNumSFcnParams, the S-function errors out.

• If the S-function parameter count passes, mdlInitializeSizes next sets the
number of continuous and discrete states using ssSetNumContStates and
ssSetNumDiscStates, respectively. This example has no continuous states and one
discrete state.

• Next, the method uses ssSetNumInputPorts and ssSetNumOutputPorts
to configure the S-function to have a single input and output port. Calls
to ssSetInputPortWidth and ssSetOutputPortWidth assign widths
to these input and output ports. The method passes a value of 1 to
ssSetInputPortDirectFeedThrough to indicate the input port has direct
feedthrough.

• ssSetNumSampleTimes then initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value of 0 to
ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because zero is the
default value for all of these macros. However, for clarity, the S-function explicitly
sets the number of work vectors.

• Next, ssGetSimMode checks if the S-function is being run in a simulation or by
the Simulink Coder product. If ssGetSimMode returns SS_SIMMODE_RTWGEN and
ssIsVariableStepSolver returns false, indicating use with the Simulink Coder
product and a fixed-step solver, then the S-function errors out.

• Lastly, ssSetOptions sets any applicable options. In this case, the only option is
SS_OPTION_EXCEPTION_FREE_CODE, which stipulates that the code is exception
free.

The mdlInitializeSizes function for this example is shown below.
/* Function: mdlInitializeSizes ===

 * Abstract:

 * Determine the S-function block's characteristics:

 * number of inputs, outputs, states, etc.

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

8-81

8 Implementing Block Features

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 1);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 2);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, 1);

 ssSetNumSampleTimes(S, 1);

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 if (ssGetSimMode(S) == SS_SIMMODE_RTWGEN && !ssIsVariableStepSolver(S)) {

 ssSetErrorStatus(S, "S-function vsfunc.c cannot be used with RTW "

 "and Fixed-Step Solvers because it contains variable"

 " sample time");

 }

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

The required S-function method mdlInitializeSampleTimes specifies
the S-function sample rates. The input argument VARIABLE_SAMPLE_TIME
passed to ssSetSampleTime specifies that this S-function has a variable-step
sample time and ssSetOffsetTime specifies an offset time of zero. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can inherit
their sample times from the parent model. Because the S-function has a variable-
step sample time, vsfunc.c must calculate the time of the next sample hit in the
mdlGetTimeOfNextVarHit method, shown later.
/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * Variable-Step S-function

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, VARIABLE_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional S-function method mdlInitializeConditions initializes the discrete
state vector. The #define statement before this method is required for the Simulink

8-82

 C MEX S-Function Examples

engine to call this function. In the example, the method uses ssGetRealDiscStates to
obtain a pointer to the discrete state vector and sets the state's initial value to zero.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

 * Abstract:

 * Initialize discrete state to zero.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 real_T *x0 = ssGetRealDiscStates(S);

 x0[0] = 0.0;

}

The optional mdlGetTimeOfNextVarHit method calculates the time of the
next sample hit. Because this method is optional, a #define statement precedes
it. First, this method obtains a pointer to the first input port's signal using
ssGetInputPortRealSignalPtrs. If the input signal's second element is positive, the
macro ssGetT gets the simulation time t. The macro ssSetTNext sets the time of the
next hit equal to t+(*U[1]), delaying the output by the amount of time specified by the
input's second element (*U[1]).
#define MDL_GET_TIME_OF_NEXT_VAR_HIT

static void mdlGetTimeOfNextVarHit(SimStruct *S)

{

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /* Make sure input will increase time */

 if (U(1) <= 0.0) {

 /* If not, abort simulation */

 ssSetErrorStatus(S,"Variable step control input must be "

 "greater than zero");

 return;

 }

 ssSetTNext(S, ssGetT(S)+U(1));

}

The required mdlOutputs function computes the S-function output signal. The function
obtains pointers to the first output port and discrete state and then assigns the state's
current value to the output.
/* Function: mdlOutputs ===

 * Abstract:

 * y = x

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 real_T *y = ssGetOutputPortRealSignal(S,0);

 real_T *x = ssGetRealDiscStates(S);

8-83

8 Implementing Block Features

 /* Return the current state as the output */

 y[0] = x[0];

}

The mdlUpdate function updates the discrete state's value. Because this method is
optional, a #define statement precedes it. The function first obtains pointers to the S-
function discrete state and first input port then assigns the value of the first element of
the first input port signal to the state.
#define MDL_UPDATE

/* Function: mdlUpdate ==

 * Abstract:

 * This function is called once for every major integration time step.

 * Discrete states are typically updated here, but this function is useful

 * for performing any tasks that should only take place once per integration

 * step.

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 real_T *x = ssGetRealDiscStates(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 x[0]=U(0);

}

The required mdlTerminate function performs any actions, such as freeing memory,
necessary at the end of the simulation. In this example, the function is empty.
/* Function: mdlTerminate ===

 * Abstract:

 * No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}

The required S-function trailer includes the files necessary for simulation or code
generation, as follows.
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Array Inputs and Outputs

The example S-function sfun_matadd.c demonstrates how to implement a matrix
addition block. The following Simulink model uses this S-function.

8-84

 C MEX S-Function Examples

sfcndemo_matadd

The S-function adds signals of various dimensions to a parameter value entered in the S-
function. The S-function accepts and outputs 2-D or n-D signals.

matlabroot/toolbox/simulink/simdemos/simfeatures/src/sfun_matadd.c

The S-function sfun_matadd.c begins with #define statements for the S-function
name and level, along with a #include statement for the simstruc.h header. After
these statements, the S-function includes or defines any other necessary headers, data,
etc. This example defines additional variables for the number of S-function parameters,
the S-function parameter value, and the flag EDIT_OK that indicates if the parameter
value can be edited during simulation.
/* SFUN_MATADD matrix support example.

 * C MEX S-function for matrix addition with one input port,

 * one output port, and one parameter.

 *

 * Input Signal: 2-D or n-D array

 * Parameter: 2-D or n-D array

 * Output Signal: 2-D or n-D array

 *

 * Input parameter output

 * --------------------------------

 * scalar scalar scalar

 * scalar matrix matrix (input scalar expansion)

 * matrix scalar matrix (parameter scalar expansion)

 * matrix matrix matrix

 *

 * Copyright 1990-2007 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME sfun_matadd

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

enum {PARAM = 0, NUM_PARAMS};

#define PARAM_ARG ssGetSFcnParam(S, PARAM)

#define EDIT_OK(S, ARG) \

 (!((ssGetSimMode(S) == SS_SIMMODE_SIZES_CALL_ONLY) \

 && mxIsEmpty(ARG)))

The S-function next implements the mdlCheckParameters method to validate the
S-function dialog parameters. The #ifdef statement checks that the S-function is
compiled as a MEX file, instead of for use with the Simulink Coder product. Because
mdlCheckParameters is optional, the S-function code contains a #define statement
to register the method. The body of the function checks that the S-function parameter

8-85

8 Implementing Block Features

value is not empty. If the parameter check fails, the S-function errors out with a call to
ssSetErrorStatus.
#ifdef MATLAB_MEX_FILE

#define MDL_CHECK_PARAMETERS

/* Function: mdlCheckParameters ================================

 * Abstract:

 * Verify parameter settings.

 */

static void mdlCheckParameters(SimStruct *S)

{

 if(EDIT_OK(S, PARAM_ARG)){

 /* Check that parameter value is not empty*/

 if(mxIsEmpty(PARAM_ARG)) {

 ssSetErrorStatus(S, "Invalid parameter specified. The"

 "parameter must be non-empty");

 return;

 }

 }

} /* end mdlCheckParameters */

#endif

The required S-function method mdlInitializeSizes then sets up the following S-
function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
one, as defined by the variable NUM_PARAMS.

• If this S-function is compiled as a MEX file, ssGetSFcnParamsCount determines
how many parameters the user actually entered into the S-function dialog.
If the number of user-specified parameters matches the number returned by
ssGetNumSFcnParams, the method calls mdlCheckParameters to validate the user-
entered data. Otherwise, the S-function errors out.

• If the parameter check passes, the S-function specifies that all S-function parameters
are tunable using ssSetSFcnParamTunable.

• The S-function then invokes ssAllowSignalsWithMoreThan2D to allow the S-
function to accept n-D signals.

• Next, ssSetNumOutputPorts and ssSetNumInputPorts specify that the S-function
has a single output port and a single input port.

• The S-function uses ssSetInputPortDimensionInfo to specify that the input
port is dynamically sized. In this case, the S-function needs to implement an
mdlSetInputPortDimensionInfo method to set the actual input dimension.

• The output dimensions depend on the dimensions of the S-function parameter. If
the parameter is a scalar, the call to ssSetOutputPortDimensionInfo specifies

8-86

 C MEX S-Function Examples

that the output port dimensions are dynamically sized. If the parameter is a
matrix, the output port dimensions are initialized to the dimensions of the S-
function parameter. In this case, the macro DECL_AND_INIT_DIMSINFO initializes
a dimsInfo structure. The S-function assigns the width, size, and dimensions of the
S-function parameter into the dimsInfo structure and then passes this structure
to ssSetOutputPortDimensionInfo in order to set the output port dimensions
accordingly.

• The S-function specifies that the input port has direct feedthrough by passing a value
of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes initializes one sample time, to be configured later in the
mdlInitializeSampleTimes method.

• Lastly, ssSetOptions sets any applicable options. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free and
SS_OPTION_WORKS_WITH_CODE_REUSE signifies that this S-function is compatible
with the subsystem code reuse feature of the Simulink Coder product.

/* Function: mdlInitializeSizes ================================

 * Abstract:

 * Initialize the sizes array

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, NUM_PARAMS);

 #if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 return; }

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL) return;

 #endif

 {

 int iParam = 0;

 int nParam = ssGetNumSFcnParams(S);

 for (iParam = 0; iParam < nParam; iParam++)

 {

 ssSetSFcnParamTunable(S, iParam, SS_PRM_TUNABLE);

 }

 }

 /* Allow signal dimensions greater than 2 */

 ssAllowSignalsWithMoreThan2D(S);

 /* Set number of input and output ports */

 if (!ssSetNumInputPorts(S,1)) return;

 if (!ssSetNumOutputPorts(S,1)) return;

8-87

8 Implementing Block Features

 /* Set dimensions of input and output ports */

 {

 int_T pWidth = mxGetNumberOfElements(PARAM_ARG);

 /* Input can be a scalar or a matrix signal. */

 if(!ssSetInputPortDimensionInfo(S,0,DYNAMIC_DIMENSION)) {

 return; }

 if(pWidth == 1) {

 /* Scalar parameter: output dimensions are unknown. */

 if(!ssSetOutputPortDimensionInfo(S,0,DYNAMIC_DIMENSION)){

 return; }

 }

 else{

 /*

 * Non-scalar parameter: output dimensions are the same

 * as the parameter dimensions. To support n-D signals,

 * must use a dimsInfo structure to specify dimensions.

 */

 DECL_AND_INIT_DIMSINFO(di); /*Initializes structure*/

 int_T pSize = mxGetNumberOfDimensions(PARAM_ARG);

 const int_T *pDims = mxGetDimensions(PARAM_ARG);

 di.width = pWidth;

 di.numDims = pSize;

 di.dims = pDims;

 if(!ssSetOutputPortDimensionInfo(S, 0, &di)) return;

 }

 }

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 ssSetNumSampleTimes(S, 1);

 ssSetOptions(S,

 SS_OPTION_WORKS_WITH_CODE_REUSE |

 SS_OPTION_EXCEPTION_FREE_CODE);

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies
the S-function sample rates. To specify that this S-function inherits its
sample time from its driving block, the S-function calls ssSetSampleTime
with the input argument INHERITED_SAMPLE_TIME. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can inherit their
sample times from the parent model.
/* Function: mdlInitializeSampleTimes ==========================

 * Abstract:

 * Initialize the sample times array.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

8-88

 C MEX S-Function Examples

The S-function calls the mdlSetWorkWidths method to register its run-time parameters.
Because mdlSetWorkWidths is an optional method, a #define statement precedes
it. The method first initializes a name for the run-time parameter and then uses
ssRegAllTunableParamsAsRunTimeParams to register the run-time parameter.
/* Function: mdlSetWorkWidths ==================================

 * Abstract:

 * Set up run-time parameter.

 */

#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S)

{

 const char_T *rtParamNames[] = {"Operand"};

 ssRegAllTunableParamsAsRunTimeParams(S, rtParamNames);

} /* end mdlSetWorkWidths */

The S-function mdlOutputs method uses a for loop to calculate the output as the sum
of the input and S-function parameter. The S-function handles n-D arrays of data using a
single index into the array.
/* Function: mdlOutputs ==

 * Abstract:

 * Compute the outputs of the S-function.

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType uPtr = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 const real_T *p = mxGetPr(PARAM_ARG);

 int_T uWidth = ssGetInputPortWidth(S,0);

 int_T pWidth = mxGetNumberOfElements(PARAM_ARG);

 int_T yWidth = ssGetOutputPortWidth(S,0);

 int i;

 UNUSED_ARG(tid); /* not used in single tasking mode */

 /*

 * Note1: Matrix signals are stored in column major order.

 * Note2: Access each matrix element by one index not two

 * indices. For example, if the output signal is a

 * [2x2] matrix signal,

 * - -

 * | y[0] y[2] |

 * | y[1] y[3] |

 * - -

 * Output elements are stored as follows:

 * y[0] --> row = 0, col = 0

 * y[1] --> row = 1, col = 0

 * y[2] --> row = 0, col = 1

 * y[3] --> row = 1, col = 1

 */

8-89

8 Implementing Block Features

 for (i = 0; i < yWidth; i++) {

 int_T uIdx = (uWidth == 1) ? 0 : i;

 int_T pIdx = (pWidth == 1) ? 0 : i;

 y[i] = *uPtr[uIdx] + p[pIdx];

 }

} /* end mdlOutputs */

During signal propagation, the S-function calls the optional
mdlSetInputPortDimensionInfo method with the candidate input port dimensions
stored in dimsInfo. The #if defined statement checks that the S-function is compiled
as a MEX file. Because mdlSetInputPortDimensionInfo is an optional method,
a #define statement precedes it. In mdlSetInputPortDimensionInfo, the S-
function uses ssSetInputPortDimensionInfo to set the dimensions of the input
port to the candidate dimensions. If the call to this macro succeeds, the S-function
further checks the candidate dimensions to ensure that the input signal is either a
2-D scalar or a matrix. If this condition is met and the output port dimensions are
still dynamically sized, the S-function calls ssSetOutputPortDimensionInfo
to set the dimension of the output port to the same candidate dimensions. The
ssSetOutputPortDimensionInfo macro cannot modify the output port dimensions if
they are already specified.
#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_DIMENSION_INFO

/* Function: mdlSetInputPortDimensionInfo ======================

 * Abstract:

 * This routine is called with the candidate dimensions for

 * an input port with unknown dimensions. If the proposed

 * dimensions are acceptable, the routine should go ahead and

 * set the actual port dimensions. If they are unacceptable

 * an error should be generated via ssSetErrorStatus.

 * Note that any other input or output ports whose dimensions

 * are implicitly defined by virtue of knowing the dimensions

 * of the given port can also have their dimensions set.

 */

static void mdlSetInputPortDimensionInfo(SimStruct *S,

 int_T port,

 const DimsInfo_T *dimsInfo)

{

 int_T pWidth = mxGetNumberOfElements(PARAM_ARG);

 int_T pSize = mxGetNumberOfDimensions(PARAM_ARG);

 const int_T *pDims = mxGetDimensions(PARAM_ARG);

 int_T uNumDims = dimsInfo->numDims;

 int_T uWidth = dimsInfo->width;

 int_T *uDims = dimsInfo->dims;

 int_T numDims;

 boolean_T isOk = true;

 int iParam = 0;

 int_T outWidth = ssGetOutputPortWidth(S, 0);

8-90

 C MEX S-Function Examples

 /* Set input port dimension */

 if(!ssSetInputPortDimensionInfo(S, port, dimsInfo)) return;

 /*

 * The block only accepts 2-D or higher signals. Check

 * number of dimensions. If the parameter and the input

 * signal are non-scalar, their dimensions must be the same.

 */

 isOk = (uNumDims >= 2) && (pWidth == 1 || uWidth == 1 ||

 pWidth == uWidth);

 numDims = (pSize != uNumDims) ? numDims : uNumDims;

 if(isOk && pWidth > 1 && uWidth > 1){

 for (iParam = 0; iParam < numDims; iParam++) {

 isOk = (pDims[iParam] == uDims[iParam]);

 if(!isOk) break;

 }

 }

 if(!isOk){

 ssSetErrorStatus(S,"Invalid input port dimensions. The "

 "input signal must be a 2-D scalar signal, or it must "

 "be a matrix with the same dimensions as the parameter "

 "dimensions.");

 return;

 }

 /* Set the output port dimensions */

 if (outWidth == DYNAMICALLY_SIZED){

 if(!ssSetOutputPortDimensionInfo(S,port,dimsInfo)) return;

 }

} /* end mdlSetInputPortDimensionInfo */

During signal propagation, if any output ports have unknown dimensions, the S-function
calls the optional mdlSetOutputPortDimensionInfo method. Because this method is
optional, a #define statement precedes it. In mdlSetOutputPortDimensionInfo, the
S-function uses ssSetOutputPortDimensionInfo to set the dimensions of the output
port to the candidate dimensions dimsInfo. If the call to this macro succeeds, the S-
function further checks the candidate dimensions to ensure that the input signal is either
a 2-D or n-D matrix. If this condition is not met, the S-function errors out with a call to
ssSetErrorStatus. Otherwise, the S-function calls ssSetInputPortDimensionInfo
to set the dimension of the input port to the same candidate dimensions.
define MDL_SET_OUTPUT_PORT_DIMENSION_INFO

/* Function: mdlSetOutputPortDimensionInfo =====================

 * Abstract:

 * This routine is called with the candidate dimensions for

 * an output port with unknown dimensions. If the proposed

 * dimensions are acceptable, the routine should go ahead and

 * set the actual port dimensions. If they are unacceptable

 * an error should be generated via ssSetErrorStatus.

8-91

8 Implementing Block Features

 * Note that any other input or output ports whose dimensions

 * are implicitly defined by virtue of knowing the dimensions

 * of the given port can also have their dimensions set.

 */

static void mdlSetOutputPortDimensionInfo(SimStruct *S,

 int_T port,

 const DimsInfo_T *dimsInfo)

{

 /*

 * If the block has scalar parameter, the output dimensions

 * are unknown. Set the input and output port to have the

 * same dimensions.

 */

 if(!ssSetOutputPortDimensionInfo(S, port, dimsInfo)) return;

 /* The block only accepts 2-D or n-D signals.

 * Check number of dimensions.

 */

 if (!(dimsInfo->numDims >= 2)){

 ssSetErrorStatus(S, "Invalid output port dimensions. "

 "The output signal must be a 2-D or n-D array (matrix) "

 "signal.");

 return;

 }else{

 /* Set the input port dimensions */

 if(!ssSetInputPortDimensionInfo(S,port,dimsInfo)) return;

 }

} /* end mdlSetOutputPortDimensionInfo */

Because the S-function has ports that are dynamically sized, it must provide an
mdlSetDefaultPortDimensionInfo method. The Simulink engine invokes this
method during signal propagation when it cannot determine the dimensionality of the
signal connected to the block's input port. This situation can happen, for example, if the
input port is unconnected. In this example, the mdlSetDefaultPortDimensionInfo
method sets the input and output ports dimensions to a scalar.

define MDL_SET_DEFAULT_PORT_DIMENSION_INFO

/* Function: mdlSetDefaultPortDimensionInfo ====================

 * This routine is called when the Simulink engine is not able

 * to find dimension candidates for ports with unknown dimensions.

 * This function must set the dimensions of all ports with

 * unknown dimensions.

 */

static void mdlSetDefaultPortDimensionInfo(SimStruct *S)

{

 int_T outWidth = ssGetOutputPortWidth(S, 0);

 /* Input port dimension must be unknown. Set it to scalar.*/

 if(!ssSetInputPortMatrixDimensions(S, 0, 1, 1)) return;

 if(outWidth == DYNAMICALLY_SIZED){

 /* Output dimensions are unknown. Set it to scalar. */

 if(!ssSetOutputPortMatrixDimensions(S, 0, 1, 1)) return;

 }

} /* end mdlSetDefaultPortDimensionInfo */

8-92

 C MEX S-Function Examples

#endif

The required mdlTerminate function performs any actions, such as freeing memory,
necessary at the end of the simulation. In this example, the function is empty.
/* Function: mdlTerminate ======================================

 * Abstract:

 * Called when the simulation is terminated.

 */

static void mdlTerminate(SimStruct *S)

{

 UNUSED_ARG(S); /* unused input argument */

} /* end mdlTerminate */

The required S-function trailer includes the files necessary for simulation or code
generation.
#ifdef MATLAB_MEX_FILE

 #include "simulink.c"

#else

 #include "cg_sfun.h"

#endif

/* [EOF] sfun_matadd.c */

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG macro to
indicate that an input argument the callback requires is not used. This optional macro is
defined in simstruc_types.h. You must call this macro once for each input argument
that a callback does not use.

Zero-Crossing Detection

The example S-function sfun_zc_sat.c demonstrates how to implement a Saturation
block. The following Simulink model uses this S-function.

sfcndemo_sfun_zc_sat

The S-function works with either fixed-step or variable-step solvers. When this S-
function inherits a continuous sample time and uses a variable-step solver, it uses a zero-
crossings algorithm to locate the exact points at which the saturation occurs.

matlabroot/toolbox/simulink/simdemos/simfeatures/src/sfun_zc_sat.c

The S-function sfun_zc_sat.c begins with #define statements for the S-function
name and level, along with a #include statement for the simstruc.h header. After

8-93

8 Implementing Block Features

these statements, the S-function includes or defines any other necessary headers, data,
etc. This example defines various parameters associated with the upper and lower
saturation bounds.
/* File : sfun_zc_sat.c

 * Abstract:

 *

 * Example of an S-function which has nonsampled zero crossings to

 * implement a saturation function. This S-function is designed to be

 * used with a variable or fixed step solver.

 *

 * A saturation is described by three equations

 *

 * (1) y = UpperLimit

 * (2) y = u

 * (3) y = LowerLimit

 *

 * and a set of inequalities that specify which equation to use

 *

 * if UpperLimit < u then use (1)

 * if LowerLimit <= u <= UpperLimit then use (2)

 * if u < LowerLimit then use (3)

 *

 * A key fact is that the valid equation 1, 2, or 3, can change at

 * any instant. Nonsampled zero crossing support helps the variable step

 * solvers locate the exact instants when behavior switches from one equation

 * to another.

 *

 * Copyright 1990-2007 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME sfun_zc_sat

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*========================*

 * General Defines/macros *

 ========================/

/* index to Upper Limit */

#define I_PAR_UPPER_LIMIT 0

/* index to Lower Limit */

#define I_PAR_LOWER_LIMIT 1

/* total number of block parameters */

#define N_PAR 2

/*

 * Make access to mxArray pointers for parameters more readable.

 */

#define P_PAR_UPPER_LIMIT (ssGetSFcnParam(S,I_PAR_UPPER_LIMIT))

#define P_PAR_LOWER_LIMIT (ssGetSFcnParam(S,I_PAR_LOWER_LIMIT))

8-94

 C MEX S-Function Examples

This S-function next implements the mdlCheckParameters method to check the
validity of the S-function dialog parameters. Because this method is optional, a #define
statement precedes it. The #if defined statement checks that this function is compiled
as a MEX file, instead of for use with the Simulink Coder product. The body of the
function performs basic checks to ensure that the user entered real vectors of equal
length for the upper and lower saturation limits. If the parameter checks fail, the S-
function errors out.

#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

 /* Function: mdlCheckParameters ===

 * Abstract:

 * Check that parameter choices are allowable.

 */

 static void mdlCheckParameters(SimStruct *S)

 {

 int_T i;

 int_T numUpperLimit;

 int_T numLowerLimit;

 const char *msg = NULL;

 /*

 * check parameter basics

 */

 for (i = 0; i < N_PAR; i++) {

 if (mxIsEmpty(ssGetSFcnParam(S,i)) ||

 mxIsSparse(ssGetSFcnParam(S,i)) ||

 mxIsComplex(ssGetSFcnParam(S,i)) ||

 !mxIsNumeric(ssGetSFcnParam(S,i))) {

 msg = "Parameters must be real vectors.";

 goto EXIT_POINT;

 }

 }

 /*

 * Check sizes of parameters.

 */

 numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);

 numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

 if ((numUpperLimit != 1) &&

 (numLowerLimit != 1) &&

 (numUpperLimit != numLowerLimit)) {

 msg = "Number of input and output values must be equal.";

 goto EXIT_POINT;

 }

 /*

 * Error exit point

 */

 EXIT_POINT:

 if (msg != NULL) {

8-95

8 Implementing Block Features

 ssSetErrorStatus(S, msg);

 }

 }

#endif /* MDL_CHECK_PARAMETERS */

The required S-function method mdlInitializeSizes sets up the following S-function
characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
two, as defined previously in the variable N_PAR.

• If this method is compiled as a MEX file, ssGetSFcnParamsCount determines
how many parameters the user actually entered into the S-function dialog.
If the number of user-specified parameters matches the number returned by
ssGetNumSFcnParams, the method calls mdlCheckParameters to check the validity
of the user-entered data. Otherwise, the S-function errors out.

• If the parameter check passes, the S-function determines the maximum number of
elements entered into either the upper or lower saturation limit parameter. This
number is needed later to determine the appropriate output width.

• Next, the number of continuous and discrete states is set using
ssSetNumContStates and ssSetNumDiscStates, respectively. This example has
no continuous or discrete states.

• The method specifies that the S-function has a single output port using
ssSetNumOutputPorts and sets the width of this output port using
ssSetOutputPortWidth. The output port width is either the maximum number of
elements in the upper or lower saturation limit or is dynamically sized. Similar code
specifies a single input port and indicates the input port has direct feedthrough by
passing a value of 1 to ssSetInputPortDirectFeedThrough.

• ssSetNumSampleTimes initializes one sample time, which the
mdlInitializeSampleTimes function configures later.

• The S-function indicates that no work vectors are used by passing a value of 0 to
ssSetNumRWork, ssSetNumIWork, etc. You can omit these lines because zero is the
default value for all of these macros. However, for clarity, the S-function explicitly
sets the number of work vectors.

• The method initializes the zero-crossing detection work vectors using
ssSetNumModes and ssSetNumNonsampledZCs. The mdlSetWorkWidths method
specifies the length of these dynamically sized vectors later.

• Lastly, ssSetOptions sets any applicable options. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free and

8-96

 C MEX S-Function Examples

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION permits scalar expansion of the
input without having to provide an mdlSetInputPortWidth function.

The mdlInitializeSizes function for this example is shown below.
/* Function: mdlInitializeSizes ===

 * Abstract:

 * Initialize the sizes array.

 */

static void mdlInitializeSizes(SimStruct *S)

{

 int_T numUpperLimit, numLowerLimit, maxNumLimit;

 /*

 * Set and Check parameter count

 */

 ssSetNumSFcnParams(S, N_PAR);

#if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL) {

 return;

 }

 } else {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

#endif

 /*

 * Get parameter size info.

 */

 numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);

 numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

 if (numUpperLimit > numLowerLimit) {

 maxNumLimit = numUpperLimit;

 } else {

 maxNumLimit = numLowerLimit;

 }

 /*

 * states

 */

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 0);

 /*

 * outputs

 * The upper and lower limits are scalar expanded

 * so their size determines the size of the output

 * only if at least one of them is not scalar.

 */

 if (!ssSetNumOutputPorts(S, 1)) return;

8-97

8 Implementing Block Features

 if (maxNumLimit > 1) {

 ssSetOutputPortWidth(S, 0, maxNumLimit);

 } else {

 ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

 }

 /*

 * inputs

 * If the upper or lower limits are not scalar then

 * the input is set to the same size. However, the

 * ssSetOptions below allows the actual width to

 * be reduced to 1 if needed for scalar expansion.

 */

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (maxNumLimit > 1) {

 ssSetInputPortWidth(S, 0, maxNumLimit);

 } else {

 ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

 }

 /*

 * sample times

 */

 ssSetNumSampleTimes(S, 1);

 /*

 * work

 */

 ssSetNumRWork(S, 0);

 ssSetNumIWork(S, 0);

 ssSetNumPWork(S, 0);

 /*

 * Modes and zero crossings:

 * If we have a variable-step solver and this block has a continuous

 * sample time, then

 * o One mode element will be needed for each scalar output

 * in order to specify which equation is valid (1), (2), or (3).

 * o Two ZC elements will be needed for each scalar output

 * in order to help the solver find the exact instants

 * at which either of the two possible "equation switches"

 * One will be for the switch from eq. (1) to (2);

 * the other will be for eq. (2) to (3) and vice versa.

 * otherwise

 * o No modes and nonsampled zero crossings will be used.

 *

 */

 ssSetNumModes(S, DYNAMICALLY_SIZED);

 ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

 /*

8-98

 C MEX S-Function Examples

 * options

 * o No mexFunctions and no problematic mxFunctions are called

 * so the exception free code option safely gives faster simulations.

 * o Scalar expansion of the inputs is desired. The option provides

 * this without the need to write mdlSetOutputPortWidth and

 * mdlSetInputPortWidth functions.

 */

 ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

 SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION));

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the S-
function sample rates. The input argument INHERITED_SAMPLE_TIME passed to
ssSetSampleTime specifies that this S-function inherits its sample time from its driving
block. The call to ssSetModelReferenceSampleTimeDefaultInheritance tells the
solver to use the default rule to determine if referenced models containing this S-function
can inherit their sample times from the parent model.
/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * Specify that the block is continuous.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

The optional method mdlSetWorkWidths initializes the size of the zero-crossing
detection work vectors. Because this method is optional, a #define statement precedes
it. The #if defined statement checks that the S-function is being compiled as a
MEX file. Zero-crossing detection can be done only when the S-function is running
at a continuous sample rate using a variable-step solver. The if statement uses
ssIsVariableStepSolver, ssGetSampleTime, and ssGetOffsetTime to determine
if this condition is met. If so, the method sets the number of modes equal to the width of
the first output port and the number of nonsampled zero crossings to twice this amount.
Otherwise, the method sets both values to zero.
#define MDL_SET_WORK_WIDTHS

#if defined(MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)

/* Function: mdlSetWorkWidths ===

 * The width of the Modes and the ZCs depends on the width of the output.

 * This width is not always known in mdlInitializeSizes so it is handled

 * here.

 */

static void mdlSetWorkWidths(SimStruct *S)

{

 int nModes;

8-99

8 Implementing Block Features

 int nNonsampledZCs;

 if (ssIsVariableStepSolver(S) &&

 ssGetSampleTime(S,0) == CONTINUOUS_SAMPLE_TIME &&

 ssGetOffsetTime(S,0) == 0.0) {

 int numOutput = ssGetOutputPortWidth(S, 0);

 /*

 * modes and zero crossings

 * o One mode element will be needed for each scalar output

 * in order to specify which equation is valid (1), (2), or (3).

 * o Two ZC elements will be needed for each scalar output

 * in order to help the solver find the exact instants

 * at which either of the two possible "equation switches"

 * One will be for the switch from eq. (1) to (2);

 * the other will be for eq. (2) to (3) and vice versa.

 */

 nModes = numOutput;

 nNonsampledZCs = 2 * numOutput;

 } else {

 nModes = 0;

 nNonsampledZCs = 0;

 }

 ssSetNumModes(S,nModes);

 ssSetNumNonsampledZCs(S,nNonsampledZCs);

}

#endif /* MDL_SET_WORK_WIDTHS */

After declaring variables for the input and output signals, the mdlOutputs functions
uses an if-else statement to create blocks of code used to calculate the output signal
based on whether the S-function uses a fixed-step or variable-step solver. The if
statement queries the length of the nonsampled zero-crossing vector. If the length, set in
mdlWorkWidths, is zero, then no zero-crossing detection is done and the output signals
are calculated directly from the input signals. Otherwise, the function uses the mode
work vector to determine how to calculate the output signal. If the simulation is at a
major time step, i.e., ssIsMajorTimeStep returns true, mdlOutputs determines
which mode the simulation is running in, either saturated at the upper limit, saturated
at the lower limit, or not saturated. Then, for both major and minor time steps, the
function calculates an output based on this mode. If the mode changed between the
previous and current time step, then a zero crossing occurred. The mdlZeroCrossings
function, not mdlOutputs, indicates this crossing to the solver.
/* Function: mdlOutputs ===

 * Abstract:

 *

 * A saturation is described by three equations

 *

 * (1) y = UpperLimit

 * (2) y = u

 * (3) y = LowerLimit

8-100

 C MEX S-Function Examples

 *

 * When this block is used with a fixed-step solver or it has a noncontinuous

 * sample time, the equations are used as it

 *

 * Now consider the case of this block being used with a variable-step solver

 * and it has a continusous sample time. Solvers work best on smooth problems.

 * In order for the solver to work without chattering, limit cycles, or

 * similar problems, it is absolutely crucial that the same equation be used

 * throughout the duration of a MajorTimeStep. To visualize this, consider

 * the case of the Saturation block feeding an Integrator block.

 *

 * To implement this rule, the mode vector is used to specify the

 * valid equation based on the following:

 *

 * if UpperLimit < u then use (1)

 * if LowerLimit <= u <= UpperLimit then use (2)

 * if u < LowerLimit then use (3)

 *

 * The mode vector is changed only at the beginning of a MajorTimeStep.

 *

 * During a minor time step, the equation specified by the mode vector

 * is used without question. Most of the time, the value of u will agree

 * with the equation specified by the mode vector. However, sometimes u's

 * value will indicate a different equation. Nonetheless, the equation

 * specified by the mode vector must be used.

 *

 * When the mode and u indicate different equations, the corresponding

 * calculations are not correct. However, this is not a problem. From

 * the ZC function, the solver will know that an equation switch occurred

 * in the middle of the last MajorTimeStep. The calculations for that

 * time step will be discarded. The ZC function will help the solver

 * find the exact instant at which the switch occurred. Using this knowledge,

 * the length of the MajorTimeStep will be reduced so that only one equation

 * is valid throughout the entire time step.

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 int_T numOutput = ssGetOutputPortWidth(S,0);

 int_T iOutput;

 /*

 * Set index and increment for input signal, upper limit, and lower limit

 * parameters so that each gives scalar expansion if needed.

 */

 int_T uIdx = 0;

 int_T uInc = (ssGetInputPortWidth(S,0) > 1);

 const real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

 int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

 const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

 int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

 UNUSED_ARG(tid); /* not used in single tasking mode */

8-101

8 Implementing Block Features

 if (ssGetNumNonsampledZCs(S) == 0) {

 /*

 * This block is being used with a fixed-step solver or it has

 * a noncontinuous sample time, so we always saturate.

 */

 for (iOutput = 0; iOutput < numOutput; iOutput++) {

 if (*uPtrs[uIdx] >= *upperLimit) {

 *y++ = *upperLimit;

 } else if (*uPtrs[uIdx] > *lowerLimit) {

 *y++ = *uPtrs[uIdx];

 } else {

 *y++ = *lowerLimit;

 }

 upperLimit += upperLimitInc;

 lowerLimit += lowerLimitInc;

 uIdx += uInc;

 }

 } else {

 /*

 * This block is being used with a variable-step solver.

 */

 int_T *mode = ssGetModeVector(S);

 /*

 * Specify indices for each equation.

 */

 enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

 /*

 * Update the Mode Vector ONLY at the beginning of a MajorTimeStep

 */

 if (ssIsMajorTimeStep(S)) {

 /*

 * Specify the mode, ie the valid equation for each output scalar.

 */

 for (iOutput = 0; iOutput < numOutput; iOutput++) {

 if (*uPtrs[uIdx] > *upperLimit) {

 /*

 * Upper limit eq is valid.

 */

 mode[iOutput] = UpperLimitEquation;

 } else if (*uPtrs[uIdx] < *lowerLimit) {

 /*

 * Lower limit eq is valid.

 */

 mode[iOutput] = LowerLimitEquation;

 } else {

 /*

 * Nonlimit eq is valid.

 */

 mode[iOutput] = NonLimitEquation;

 }

 /*

8-102

 C MEX S-Function Examples

 * Adjust indices to give scalar expansion if needed.

 */

 uIdx += uInc;

 upperLimit += upperLimitInc;

 lowerLimit += lowerLimitInc;

 }

 /*

 * Reset index to input and limits.

 */

 uIdx = 0;

 upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

 lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

 } /* end IsMajorTimeStep */

 /*

 * For both MinorTimeSteps and MajorTimeSteps calculate each scalar

 * output using the equation specified by the mode vector.

 */

 for (iOutput = 0; iOutput < numOutput; iOutput++) {

 if (mode[iOutput] == UpperLimitEquation) {

 /*

 * Upper limit eq.

 */

 *y++ = *upperLimit;

 } else if (mode[iOutput] == LowerLimitEquation) {

 /*

 * Lower limit eq.

 */

 *y++ = *lowerLimit;

 } else {

 /*

 * Nonlimit eq.

 */

 *y++ = *uPtrs[uIdx];

 }

 /*

 * Adjust indices to give scalar expansion if needed.

 */

 uIdx += uInc;

 upperLimit += upperLimitInc;

 lowerLimit += lowerLimitInc;

 }

 }

} /* end mdlOutputs */

The mdlZeroCrossings method determines if a zero crossing occurred between the
previous and current time step. The method obtains a pointer to the input signal using
ssGetInputPortRealSignalPtrs. A comparison of this signal's value to the value
of the upper and lower saturation limits determines values for the elements of the
nonsampled zero-crossing vector. If any element of the nonsampled zero-crossing vector

8-103

8 Implementing Block Features

switches from negative to positive, or positive to negative, a zero crossing occurred. In the
event of a zero crossing, the Simulink engine modifies the step size and recalculates the
outputs to try to locate the exact zero crossing.
#define MDL_ZERO_CROSSINGS

#if defined(MDL_ZERO_CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlZeroCrossings ===

 * Abstract:

 * This will only be called if the number of nonsampled zero crossings is

 * greater than 0 which means this block has a continuous sample time and the

 * model is using a variable-step solver.

 *

 * Calculate zero crossing (ZC) signals that help the solver find the

 * exact instants at which equation switches occur:

 *

 * if UpperLimit < u then use (1)

 * if LowerLimit <= u <= UpperLimit then use (2)

 * if u < LowerLimit then use (3)

 *

 * The key words are help find. There is no choice of a function that will

 * direct the solver to the exact instant of the change. The solver will

 * track the zero crossing signal and do a bisection style search for the

 * exact instant of equation switch.

 *

 * There is generally one ZC signal for each pair of signals that can

 * switch. The three equations above would break into two pairs (1)&(2)

 * and (2)&(3). The possibility of a "long jump" from (1) to (3) does

 * not need to be handled as a separate case. It is implicitly handled.

 *

 * When ZCs are calculated, the value is normally used twice. When it is

 * first calculated, it is used as the end of the current time step. Later,

 * it will be used as the beginning of the following step.

 *

 * The sign of the ZC signal always indicates an equation from the pair. For

 * S-functions, which equation is associated with a positive ZC and which is

 * associated with a negative ZC doesn't really matter. If the ZC is positive

 * at the beginning and at the end of the time step, this implies that the

 * "positive" equation was valid throughout the time step. Likewise, if the

 * ZC is negative at the beginning and at the end of the time step, this

 * implies that the "negative" equation was valid throughout the time step.

 * Like any other nonlinear solver, this is not foolproof, but it is an

 * excellent indicator. If the ZC has a different sign at the beginning and

 * at the end of the time step, then a equation switch definitely occurred

 * during the time step.

 *

 * Ideally, the ZC signal gives an estimate of when an equation switch

 * occurred. For example, if the ZC signal is -2 at the beginning and +6 at

 * the end, then this suggests that the switch occurred

 * 25% = 100%*(-2)/(-2-(+6)) of the way into the time step. It will almost

 * never be true that 25% is perfectly correct. There is no perfect choice

 * for a ZC signal, but there are some good rules. First, choose the ZC

 * signal to be continuous. Second, choose the ZC signal to give a monotonic

 * measure of the "distance" to a signal switch; strictly monotonic is ideal.

 */

8-104

 C MEX S-Function Examples

static void mdlZeroCrossings(SimStruct *S)

{

 int_T iOutput;

 int_T numOutput = ssGetOutputPortWidth(S,0);

 real_T *zcSignals = ssGetNonsampledZCs(S);

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /*

 * Set index and increment for the input signal, upper limit, and lower

 * limit parameters so that each gives scalar expansion if needed.

 */

 int_T uIdx = 0;

 int_T uInc = (ssGetInputPortWidth(S,0) > 1);

 real_T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);

 int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);

 real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

 int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

 /*

 * For each output scalar, give the solver a measure of "how close things

 * are" to an equation switch.

 */

 for (iOutput = 0; iOutput < numOutput; iOutput++) {

 /* The switch from eq (1) to eq (2)

 *

 * if UpperLimit < u then use (1)

 * if LowerLimit <= u <= UpperLimit then use (2)

 *

 * is related to how close u is to UpperLimit. A ZC choice

 * that is continuous, strictly monotonic, and is

 * u - UpperLimit

 * or it is negative.

 */

 zcSignals[2*iOutput] = *uPtrs[uIdx] - *upperLimit;

 /* The switch from eq (2) to eq (3)

 *

 * if LowerLimit <= u <= UpperLimit then use (2)

 * if u < LowerLimit then use (3)

 *

 * is related to how close u is to LowerLimit. A ZC choice

 * that is continuous, strictly monotonic, and is

 * u - LowerLimit.

 */

 zcSignals[2*iOutput+1] = *uPtrs[uIdx] - *lowerLimit;

 /*

 * Adjust indices to give scalar expansion if needed.

 */

 uIdx += uInc;

 upperLimit += upperLimitInc;

 lowerLimit += lowerLimitInc;

 }

}

8-105

8 Implementing Block Features

#endif /* end mdlZeroCrossings */

The S-function concludes with the required mdlTerminate function. In this example, the
function is empty.
/* Function: mdlTerminate ===

 * Abstract:

 * No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

 UNUSED_ARG(S); /* unused input argument */

}

The required S-function trailer includes the files necessary for simulation or code
generation, as follows.
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlOutputs and mdlTerminate functions use the UNUSED_ARG macro to
indicate that an input argument the callback requires is not used. This optional macro
is defined in simstruc_types.h. If used, you must call this macro once for each input
argument that a callback does not use.

Discontinuities in Continuous States

The example S-function stvctf.c demonstrates a time-varying continuous transfer
function. The following Simulink model uses this S-function.

sfcndemo_stvctf

The S-function demonstrates how to work with the solvers so that the simulation
maintains consistency, which means that the block maintains smooth and consistent
signals for the integrators although the equations that are being integrated are changing.

matlabroot/toolbox/simulink/simdemos/simfeatures/src/stvctf.c

The S-function stvctf.c begins with #define statements for the S-function name
and level, along with a #include statement for the simstruc.h header. After these

8-106

 C MEX S-Function Examples

statements, the S-function includes or defines any other necessary headers, data, etc.
This example defines parameters for the transfer function's numerator and denominator,
which are entered into the S-function dialog. The comments at the beginning of this
S-function provide additional information on the purpose of the work vectors in this
example.
/*

 * File : stvctf.c

 * Abstract:

 * Time Varying Continuous Transfer Function block

 *

 * This S-function implements a continuous time transfer function

 * whose transfer function polynomials are passed in via the input

 * vector. This is useful for continuous time adaptive control

 * applications.

 *

 * This S-function is also an example of how to use banks to avoid

 * problems with computing derivatives when a continuous output has

 * discontinuities. The consistency checker can be used to verify that

 * your S-function is correct with respect to always maintaining smooth

 * and consistent signals for the integrators. By consistent we mean that

 * two mdlOutputs calls at major time t and minor time t are always the

 * same. The consistency checker is enabled on the diagnostics page of the

 * Configuraion parameters dialog box. The update method of this S-function

 * modifies the coefficients of the transfer function, which cause the

 * output to "jump." To have the simulation work properly, we need to let

 * the solver know of these discontinuities by setting

 * ssSetSolverNeedsReset and then we need to use multiple banks of

 * coefficients so the coefficients used in the major time step output

 * and the minor time step outputs are the same. In the simulation loop

 * we have:

 * Loop:

 * o Output in major time step at time t

 * o Update in major time step at time t

 * o Integrate (minor time step):

 * o Consistency check: recompute outputs at time t and compare

 * with current outputs.

 * o Derivatives at time t

 * o One or more Output,Derivative evaluations at time t+k

 * where k <= step_size to be taken.

 * o Compute state, x

 * o t = t + step_size

 * End_Integrate

 * End_Loop

 * Another purpose of the consistency checker is to verify that when

 * the solver needs to try a smaller step_size, the recomputing of

 * the output and derivatives at time t doesn't change. Step size

 * reduction occurs when tolerances aren't met for the current step size.

 * The ideal ordering would be to update after integrate. To achieve

 * this we have two banks of coefficients. And the use of the new

 * coefficients, which were computed in update, is delayed until after

 * the integrate phase is complete.

 *

 * This block has multiple sample times and will not work correctly

8-107

8 Implementing Block Features

 * in a multitasking environment. It is designed to be used in

 * a single tasking (or variable step) simulation environment.

 * Because this block accesses the input signal in both tasks,

 * it cannot specify the sample times of the input and output ports

 * (SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED).

 *

 * See simulink/src/sfuntmpl_doc.c.

 *

 * Copyright 1990-7 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME stvctf

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*

 * Defines for easy access to the numerator and denominator polynomials

 * parameters

 */

#define NUM(S) ssGetSFcnParam(S, 0)

#define DEN(S) ssGetSFcnParam(S, 1)

#define TS(S) ssGetSFcnParam(S, 2)

#define NPARAMS 3

This S-function implements the mdlCheckParameters method to check the validity of
the S-function dialog parameters. Because this method is optional, a #define statement
precedes it. The #if defined statement checks that this function is compiled as a
MEX file, instead of for use with the Simulink Coder product. The body of the function
performs basic checks to ensure that the user entered real vectors for the numerator and
denominator, and that the denominator has a higher order than the numerator. If the
parameter check fails, the S-function errors out.
#define MDL_CHECK_PARAMETERS

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

 /* Function: mdlCheckParameters ===

 * Abstract:

 * Validate our parameters to verify:

 * o The numerator must be of a lower order than the denominator.

 * o The sample time must be a real positive nonzero value.

 */

 static void mdlCheckParameters(SimStruct *S)

 {

 int_T i;

 for (i = 0; i < NPARAMS; i++) {

 real_T *pr;

 int_T el;

 int_T nEls;

 if (mxIsEmpty(ssGetSFcnParam(S,i)) ||

 mxIsSparse(ssGetSFcnParam(S,i)) ||

 mxIsComplex(ssGetSFcnParam(S,i)) ||

 !mxIsNumeric(ssGetSFcnParam(S,i))) {

8-108

 C MEX S-Function Examples

 ssSetErrorStatus(S,"Parameters must be real finite vectors");

 return;

 }

 pr = mxGetPr(ssGetSFcnParam(S,i));

 nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));

 for (el = 0; el < nEls; el++) {

 if (!mxIsFinite(pr[el])) {

 ssSetErrorStatus(S,"Parameters must be real finite vectors");

 return;

 }

 }

 }

 if (mxGetNumberOfElements(NUM(S)) > mxGetNumberOfElements(DEN(S)) &&

 mxGetNumberOfElements(DEN(S)) > 0 && *mxGetPr(DEN(S)) != 0.0) {

 ssSetErrorStatus(S,"The denominator must be of higher order than "

 "the numerator, nonempty and with first "

 "element nonzero");

 return;

 }

 /* xxx verify finite */

 if (mxGetNumberOfElements(TS(S)) != 1 || mxGetPr(TS(S))[0] <= 0.0) {

 ssSetErrorStatus(S,"Invalid sample time specified");

 return;

 }

 }

#endif /* MDL_CHECK_PARAMETERS */

The required S-function method mdlInitializeSizes then sets up the following S-
function characteristics.

• ssSetNumSFcnParams sets the number of expected S-function dialog parameters to
three, as defined previously in the variable NPARAMS.

• If this method is compiled as a MEX file, ssGetSFcnParamsCount determines how
many parameters the user entered into the S-function dialog. If the number of user-
specified parameters matches the number returned by ssGetNumSFcnParams, the
method calls mdlCheckParameters to check the validity of the user-entered data.
Otherwise, the S-function errors out.

• If the parameter check passes, the S-function specifies the number of continuous
and discrete states using ssSetNumContStates and ssSetNumDiscStates,
respectively. This example has no discrete states and sets the number of continuous
states based on the number of coefficients in the transfer function's denominator.

• Next, ssSetNumInputPorts specifies that the S-function has a single input
port and sets its width to one plus twice the length of the denominator using
ssSetInputPortWidth. The method uses the value provided by the third S-function
dialog parameter as the input port's sample time. This parameter indicates the

8-109

8 Implementing Block Features

rate at which the transfer function is modified during simulation. The S-function
specifies that the input port has direct feedthrough by passing a value of 1 to
ssSetInputPortDirectFeedThrough.

• ssSetNumOutputPorts specifies that the S-function has a single output port.
The method uses ssSetOutputPortWidth to set the width of this output port,
ssSetOutputPortSampleTime to specify that the output port has a continuous
sample time, and ssSetOutputPortOffsetTime to set the offset time to zero.

• ssSetNumSampleTimes then initializes two sample times, which the
mdlInitializeSampleTimes function configures later.

• The method passes a value of four times the number of denominator coefficients
to ssSetNumRWork in order to set the length of the floating-point work vector.
ssSetNumIWork then sets the length of the integer work vector to two. The RWork
vectors store two banks of transfer function coefficients, while the IWork vector
indicates which bank in the RWork vector is currently in use. The S-function sets the
length of all other work vectors to zero. You can omit these lines because zero is the
default value for these macros. However, for clarity, the S-function explicitly sets the
number of work vectors.

• Lastly, ssSetOptions sets any applicable options. In this case,
SS_OPTION_EXCEPTION_FREE_CODE stipulates that the code is exception free.

The mdlInitializeSizes function for this example is shown below.
/* Function: mdlInitializeSizes ===

 * Abstract:

 * Determine the S-function block's characteristics:

 * number of inputs, outputs, states, etc.

 */

static void mdlInitializeSizes(SimStruct *S)

{

 int_T nContStates;

 int_T nCoeffs;

 /* See sfuntmpl_doc.c for more details on the macros below. */

 ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters. */

#if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL) {

 return;

 }

 } else {

 return; /* Parameter mismatch reported by the Simulink engine*/

 }

#endif

8-110

 C MEX S-Function Examples

 /*

 * Define the characteristics of the block:

 *

 * Number of continuous states: length of denominator - 1

 * Inputs port width 2 * (NumContStates+1) + 1

 * Output port width 1

 * DirectFeedThrough: 0 (Although this should be computed.

 * We'll assume coefficients entered

 * are strictly proper).

 * Number of sample times: 2 (continuous and discrete)

 * Number of Real work elements: 4*NumCoeffs

 * (Two banks for num and den coeff's:

 * NumBank0Coeffs

 * DenBank0Coeffs

 * NumBank1Coeffs

 * DenBank1Coeffs)

 * Number of Integer work elements: 2 (indicator of active bank 0 or 1

 * and flag to indicate when banks

 * have been updated).

 *

 * The number of inputs arises from the following:

 * o 1 input (u)

 * o the numerator and denominator polynomials each have NumContStates+1

 * coefficients

 */

 nCoeffs = mxGetNumberOfElements(DEN(S));

 nContStates = nCoeffs - 1;

 ssSetNumContStates(S, nContStates);

 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 1 + (2*nCoeffs));

 ssSetInputPortDirectFeedThrough(S, 0, 0);

 ssSetInputPortSampleTime(S, 0, mxGetPr(TS(S))[0]);

 ssSetInputPortOffsetTime(S, 0, 0);

 if (!ssSetNumOutputPorts(S,1)) return;

 ssSetOutputPortWidth(S, 0, 1);

 ssSetOutputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOutputPortOffsetTime(S, 0, 0);

 ssSetNumSampleTimes(S, 2);

 ssSetNumRWork(S, 4 * nCoeffs);

 ssSetNumIWork(S, 2);

 ssSetNumPWork(S, 0);

 ssSetNumModes(S, 0);

 ssSetNumNonsampledZCs(S, 0);

 /* Take care when specifying exception free code - see sfuntmpl_doc.c */

 ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE));

8-111

8 Implementing Block Features

} /* end mdlInitializeSizes */

The required S-function method mdlInitializeSampleTimes specifies the S-
function sample rates. The first call to ssSetSampleTime specifies that the first
sample rate is continuous and the subsequent call to ssSetOffsetTime sets the
offset to zero. The second call to this pair of macros sets the second sample time
to the value of the third S-function parameter with an offset of zero. The call to
ssSetModelReferenceSampleTimeDefaultInheritance tells the solver to use the
default rule to determine if referenced models containing this S-function can inherit their
sample times from the parent model.
/* Function: mdlInitializeSampleTimes ===

 * Abstract:

 * This function is used to specify the sample time(s) for the

 * S-function. This S-function has two sample times. The

 * first, a continuous sample time, is used for the input to the

 * transfer function, u. The second, a discrete sample time

 * provided by the user, defines the rate at which the transfer

 * function coefficients are updated.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 /*

 * the first sample time, continuous

 */

 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 /*

 * the second, discrete sample time, is user provided

 */

 ssSetSampleTime(S, 1, mxGetPr(TS(S))[0]);

 ssSetOffsetTime(S, 1, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

The optional S-function method mdlInitializeConditions initializes the continuous
state vector and the initial numerator and denominator vectors. The #define statement
before this method is required for the Simulink engine to call this function. The function
initializes the continuous states to zero. The numerator and denominator coefficients are
initialized from the first two S-function parameters, normalized by the first denominator
coefficient. The function sets the value stored in the IWork vector to zero, to indicate that
the first bank of numerator and denominator coefficients stored in the RWork vector is
currently in use.
#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions ==

 * Abstract:

8-112

 C MEX S-Function Examples

 * Initialize the states, numerator and denominator coefficients.

 */

static void mdlInitializeConditions(SimStruct *S)

{

 int_T i;

 int_T nContStates = ssGetNumContStates(S);

 real_T *x0 = ssGetContStates(S);

 int_T nCoeffs = nContStates + 1;

 real_T *numBank0 = ssGetRWork(S);

 real_T *denBank0 = numBank0 + nCoeffs;

 int_T *activeBank = ssGetIWork(S);

 /*

 * The continuous states are all initialized to zero.

 */

 for (i = 0; i < nContStates; i++) {

 x0[i] = 0.0;

 numBank0[i] = 0.0;

 denBank0[i] = 0.0;

 }

 numBank0[nContStates] = 0.0;

 denBank0[nContStates] = 0.0;

 /*

 * Set up the initial numerator and denominator.

 */

 {

 const real_T *numParam = mxGetPr(NUM(S));

 int numParamLen = mxGetNumberOfElements(NUM(S));

 const real_T *denParam = mxGetPr(DEN(S));

 int denParamLen = mxGetNumberOfElements(DEN(S));

 real_T den0 = denParam[0];

 for (i = 0; i < denParamLen; i++) {

 denBank0[i] = denParam[i] / den0;

 }

 for (i = 0; i < numParamLen; i++) {

 numBank0[i] = numParam[i] / den0;

 }

 }

 /*

 * Normalize if this transfer function has direct feedthrough.

 */

 for (i = 1; i < nCoeffs; i++) {

 numBank0[i] -= denBank0[i]*numBank0[0];

 }

 /*

 * Indicate bank0 is active (i.e. bank1 is oldest).

 */

 *activeBank = 0;

8-113

8 Implementing Block Features

} /* end mdlInitializeConditions */

The mdlOutputs function calculates the S-function output signals when the S-function
is simulating in a continuous task, i.e., ssIsContinuousTask is true. If the simulation
is also at a major time step, mdlOutputs checks if the numerator and denominator
coefficients need to be updated, as indicated by a switch in the active bank stored in the
IWork vector. At both major and minor time steps, the S-function calculates the output
using the numerator coefficients stored in the active bank.

/* Function: mdlOutputs ===

 * Abstract:

 * The outputs for this block are computed by using a controllable state-

 * space representation of the transfer function.

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 if (ssIsContinuousTask(S,tid)) {

 int i;

 real_T *num;

 int nContStates = ssGetNumContStates(S);

 real_T *x = ssGetContStates(S);

 int_T nCoeffs = nContStates + 1;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 int_T *activeBank = ssGetIWork(S);

 /*

 * Switch banks because we've updated them in mdlUpdate and we're no

 * longer in a minor time step.

 */

 if (ssIsMajorTimeStep(S)) {

 int_T *banksUpdated = ssGetIWork(S) + 1;

 if (*banksUpdated) {

 *activeBank = !(*activeBank);

 *banksUpdated = 0;

 /*

 * Need to tell the solvers that the derivatives are no

 * longer valid.

 */

 ssSetSolverNeedsReset(S);

 }

 }

 num = ssGetRWork(S) + (*activeBank) * (2*nCoeffs);

 /*

 * The continuous system is evaluated using a controllable state space

 * representation of the transfer function. This implies that the

 * output of the system is equal to:

 *

 * y(t) = Cx(t) + Du(t)

 * = [b1 b2 ... bn]x(t) + b0u(t)

 *

 * where b0, b1, b2, ... are the coefficients of the numerator

8-114

 C MEX S-Function Examples

 * polynomial:

 *

 * B(s) = b0 s^n + b1 s^n-1 + b2 s^n-2 + ... + bn-1 s + bn

 */

 *y = *num++ * (*uPtrs[0]);

 for (i = 0; i < nContStates; i++) {

 *y += *num++ * *x++;

 }

 }

} /* end mdlOutputs */

Although this example has no discrete states, the method still implements the
mdlUpdate function to update the transfer function coefficients at every major time step.
Because this method is optional, a #define statement precedes it. The method uses
ssGetInputPortRealSignalPtrs to obtain a pointer to the input signal. The input
signal's values become the new transfer function coefficients, which the S-function stores
in the bank of the inactive RWork vector. When the mdlOutputs function is later called
at this major time step, it updates the active bank to be this updated bank of coefficients.
#define MDL_UPDATE

/* Function: mdlUpdate ==

 * Abstract:

 * Every time through the simulation loop, update the

 * transfer function coefficients. Here we update the oldest bank.

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

 if (ssIsSampleHit(S, 1, tid)) {

 int_T i;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 int_T uIdx = 1;/*1st coeff is after signal input*/

 int_T nContStates = ssGetNumContStates(S);

 int_T nCoeffs = nContStates + 1;

 int_T bankToUpdate = !ssGetIWork(S)[0];

 real_T *num = ssGetRWork(S)+bankToUpdate*2*nCoeffs;

 real_T *den = num + nCoeffs;

 real_T den0;

 int_T allZero;

 /*

 * Get the first denominator coefficient. It will be used

 * for normalizing the numerator and denominator coefficients.

 *

 * If all inputs are zero, we probably could have unconnected

 * inputs, so use the parameter as the first denominator coefficient.

 */

 den0 = *uPtrs[uIdx+nCoeffs];

 if (den0 == 0.0) {

 den0 = mxGetPr(DEN(S))[0];

 }

8-115

8 Implementing Block Features

 /*

 * Grab the numerator.

 */

 allZero = 1;

 for (i = 0; (i < nCoeffs) && allZero; i++) {

 allZero &= *uPtrs[uIdx+i] == 0.0;

 }

 if (allZero) { /* if numerator is all zero */

 const real_T *numParam = mxGetPr(NUM(S));

 int_T numParamLen = mxGetNumberOfElements(NUM(S));

 /*

 * Move the input to the denominator input and

 * get the denominator from the input parameter.

 */

 uIdx += nCoeffs;

 num += nCoeffs - numParamLen;

 for (i = 0; i < numParamLen; i++) {

 *num++ = *numParam++ / den0;

 }

 } else {

 for (i = 0; i < nCoeffs; i++) {

 *num++ = *uPtrs[uIdx++] / den0;

 }

 }

 /*

 * Grab the denominator.

 */

 allZero = 1;

 for (i = 0; (i < nCoeffs) && allZero; i++) {

 allZero &= *uPtrs[uIdx+i] == 0.0;

 }

 if (allZero) { /* If denominator is all zero. */

 const real_T *denParam = mxGetPr(DEN(S));

 int_T denParamLen = mxGetNumberOfElements(DEN(S));

 den0 = denParam[0];

 for (i = 0; i < denParamLen; i++) {

 *den++ = *denParam++ / den0;

 }

 } else {

 for (i = 0; i < nCoeffs; i++) {

 *den++ = *uPtrs[uIdx++] / den0;

 }

 }

 /*

 * Normalize if this transfer function has direct feedthrough.

 */

 num = ssGetRWork(S) + bankToUpdate*2*nCoeffs;

 den = num + nCoeffs;

 for (i = 1; i < nCoeffs; i++) {

8-116

 C MEX S-Function Examples

 num[i] -= den[i]*num[0];

 }

 /*

 * Indicate oldest bank has been updated.

 */

 ssGetIWork(S)[1] = 1;

 }

} /* end mdlUpdate */

The mdlDerivatives function calculates the continuous state derivatives. The
function uses the coefficients from the active bank to solve a controllable state-space
representation of the transfer function.
#define MDL_DERIVATIVES

/* Function: mdlDerivatives ===

 * Abstract:

 * The derivatives for this block are computed by using a controllable

 * state-space representation of the transfer function.

 */

static void mdlDerivatives(SimStruct *S)

{

 int_T i;

 int_T nContStates = ssGetNumContStates(S);

 real_T *x = ssGetContStates(S);

 real_T *dx = ssGetdX(S);

 int_T nCoeffs = nContStates + 1;

 int_T activeBank = ssGetIWork(S)[0];

 const real_T *num = ssGetRWork(S) + activeBank*(2*nCoeffs);

 const real_T *den = num + nCoeffs;

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /*

 * The continuous system is evaluated using a controllable state-space

 * representation of the transfer function. This implies that the

 * next continuous states are computed using:

 *

 * dx = Ax(t) + Bu(t)

 * = [-a1 -a2 ... -an] [x1(t)] + [u(t)]

 * [1 0 ... 0] [x2(t)] + [0]

 * [0 1 ... 0] [x3(t)] + [0]

 * [. ] . + .

 * [. ] . + .

 * [. ] . + .

 * [0 0 ... 1 0] [xn(t)] + [0]

 *

 * where a1, a2, ... are the coefficients of the numerator polynomial:

 *

 * A(s) = s^n + a1 s^n-1 + a2 s^n-2 + ... + an-1 s + an

 */

 dx[0] = -den[1] * x[0] + *uPtrs[0];

 for (i = 1; i < nContStates; i++) {

 dx[i] = x[i-1];

 dx[0] -= den[i+1] * x[i];

8-117

8 Implementing Block Features

 }

} /* end mdlDerivatives */

The required mdlTerminate function performs any actions, such as freeing memory,
necessary at the end of the simulation. In this example, the function is empty.
/* Function: mdlTerminate ===

 * Abstract:

 * Called when the simulation is terminated.

 * For this block, there are no end of simulation tasks.

 */

static void mdlTerminate(SimStruct *S)

{

 UNUSED_ARG(S); /* unused input argument */

} /* end mdlTerminate */

The required S-function trailer includes the files necessary for simulation or code
generation, as follows.
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX file? */

#include "simulink.c" /* MEX file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Note The mdlTerminate function uses the UNUSED_ARG macro to indicate that an
input argument the callback requires is not used. This optional macro is defined in
simstruc_types.h. If used, you must call this macro once for each input argument that
a callback does not use.

8-118

9

S-Function Callback Methods —
Alphabetical List

Every user-written S-function must implement a set of methods, called callback methods
or simply callbacks, that the Simulink engine invokes when simulating a model that
contains the S-function. Some callback methods are optional. The engine invokes an
optional callback only if the S-function defines the callback. This topic describes the
purpose and syntax of all callback methods that an S-function can implement. In each
case, the documentation for a callback method indicates whether it is required or
optional. For a list of required callback methods, see “Callback Methods That an S-
Function Must Implement” on page 4-40.

9 S-Function Callback Methods — Alphabetical List

CheckParameters
Check the validity of a MATLAB S-Function's parameters

Required

No

Language

MATLAB

Syntax
CheckParameters(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing a Level-2 MATLAB
S-Function block.

Description

Verifies new parameter settings whenever parameters change or are reevaluated during
a simulation.

When a simulation is running, changes to S-function parameters can occur at any time
during the simulation loop, that is, either at the start of a simulation step or during
a simulation step. When the change occurs during a simulation step, the Simulink
engine calls this routine twice to handle the parameter change. The first call during the
simulation step is used to verify that the parameters are correct. After verifying the new
parameters, the simulation continues using the original parameter values until the next

9-2

 CheckParameters

simulation step, at which time the new parameter values are used. Redundant calls are
needed to maintain simulation consistency.

Note You cannot access the work, state, input, output, and other vectors in this routine.
Use this routine only to validate the parameters. Additional processing of the parameters
should be done in ProcessParameters.

Example

In a Level-2 MATLAB S-function, the setup method registers the CheckParameters
method as follows

s.RegBlockMethod('CheckParameters', @CheckParam);

The local function CheckParam then verifies the S-function parameters. In this example,
the function checks that the second parameter, an upper limit value, is greater than the
first S-function parameter, a lower limit value.

function CheckParam(s)

% Check that upper limit is greater than lower limit

lowerLim = s.DialogPrm(1).Data;

upperLim = s.DialogPrm(2).Data;

if upperLim <= lowerLim,

 error('The upper limit must be greater than the lower limit.');

end

See Also

ProcessParameters, Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock,
mdlCheckParameters

Introduced in R2012b

9-3

9 S-Function Callback Methods — Alphabetical List

Derivatives
Compute a MATLAB S-Function's derivatives

Required

No

Language

MATLAB

Syntax

Derivatives(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block

Description

The Simulink engine invokes this optional method at each time step to compute
the derivatives of the S-function's continuous states. This method should store the
derivatives in the S-function's state derivatives vector. In a Level-2 MATLAB S-function,
use the run-time object's Derivatives method.

Each time the Derivatives routine is called, it must explicitly set the values of all
derivatives. The derivative vector does not maintain the values from the last call to this
routine. The memory allocated to the derivative vector changes during execution.

9-4

 Derivatives

Example

For a Level-2 MATLAB S-function example, see msfcn_limintm.m.

See Also

Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock, mdlDerivatives

Introduced in R2012b

9-5

9 S-Function Callback Methods — Alphabetical List

Disable
Respond to disabling of an enabled system containing this MATLAB S-Function block

Required

No

Language

MATLAB

Syntax
Disable(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine invokes this optional method if this block resides in an enabled
subsystem and the enabled subsystem changes from an enabled to a disabled state at the
current time step. Your S-function can use this method to perform any actions required
by the disabling of the containing subsystem.

See Also

Enable, Simulink.MSFcnRunTimeBlock, mdlDisable

9-6

 Disable

Introduced in R2012b

9-7

9 S-Function Callback Methods — Alphabetical List

Enable
Respond to enabling of an enabled system containing this MATLAB S-Function block

Required

No

Language

MATLAB

Syntax
Enable(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine invokes this optional method if this block resides in an enabled
subsystem and the enabled subsystem changes from a disabled to an enabled state at the
current time step. Your S-function can use this method to perform any actions required
by the enabling of the containing subsystem.

See Also

Disable, Simulink.MSFcnRunTimeBlock, mdlEnable

9-8

 Enable

Introduced before R2006a

9-9

9 S-Function Callback Methods — Alphabetical List

GetSimState
Return the MATLAB S-function simulation state as a valid MATLAB data structure,
such as a matrix structure or a cell array.

Required

No

Language

MATLAB

Syntax
GetSimState(s)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine invokes this custom method to get the simulation state (SimState)
of the model containing S. A call to this method should occur after Start and before
Terminate to ensure that all of the S-function data structures (e.g., states, DWork
vectors, and outputs) are available.

See Also

SetSimState, Simulink.MSFcnRunTimeBlock, mdlGetSimState

9-10

 GetSimState

Introduced in R2015b

9-11

9 S-Function Callback Methods — Alphabetical List

InitializeConditions
Initialize the state vectors of this MATLAB S-function

Required

No

Language

MATLAB

Syntax
InitializeConditions(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine invokes this optional method at the beginning of a simulation. It
should initialize the continuous and discrete states, if any, of this S-Function block. In
a Level-2 MATLAB S-function, use the ContStates or Dwork run-time object methods
to access the continuous and discrete states. This method can also perform any other
initialization activities that this S-function requires.

Note If you have Simulink Coder, and you need to ensure that the initialization code in
the InitializeConditions function is run only once, then move this initialization

9-12

 InitializeConditions

code into the Start method. MathWorks recommends this code change as a best
practice.

If this S-function resides in an enabled subsystem configured to reset states, the
Simulink engine also calls this method when the enabled subsystem restarts execution.

The Simulink engine calls InitializeConditions prior to calculating the S-
function's input signals. Therefore, since the input signal values are not yet available,
InitializeConditions should not use the input signal values to set initial conditions.
If your S-function needs to initialize internal values using the block's input signals,
perform the initialization in Outputs.

For example, in a C MEX S-function, initializes an IWork vector with one element in the
mdlInitializeSizes method.

ssSetNumIWork(S, 1);

The IWork vector holds a flag indicating if initial values have been specified. Initialize
the flag's value in the mdlInitializeCondition method.

static void mdlInitializeConditions(SimStruct *S)

{

 /* The mdlInitializeConditions method is called when the simulation

 start and every time an enabled subsystem is re-enabled.

 Reset the IWork flag to 1 when values need to be reinitialized.*/

 ssSetIWorkValue(S, 0, 1);

}

Check the value of the IWork vector flag in the mdlOutputs method, to determine if
initial values need to be set. Since the engine has calculated input values at this point in
the simulation, the mdlOutputs method can use them to initialize internal values.

static void mdlOutputs(SimStruct *S, int_T tid)

{

 // Initialize values if the IWork vector flag is true. //

 if (ssGetIWorkValue(S, 0) == 1) {

 // Enter initialization code here //

 }

 // Remainder of mdlOutputs function //

}

9-13

9 S-Function Callback Methods — Alphabetical List

For a Level-2 MATLAB S-function, use a DWork vector instead of an IWork vector in the
previous example.

Example

This example initializes both a continuous and discrete state to 1.0. Level-2 MATLAB S-
functions store discrete states in their DWork vectors.

function InitializeConditions(s)

s.ContStates.Data(1) = 1;

s.Dwork(1).Data = 1;

% endfunction

See Also

Start, Outputs, Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock,
mdlInitializeConditions

Introduced in R2012b

9-14

 mdlCheckParameters

mdlCheckParameters
Check the validity of a C MEX S-function's parameters

Required

No

Languages

C, C++

Syntax
#define MDL_CHECK_PARAMETERS

void mdlCheckParameters(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

Verifies new parameter settings whenever parameters change or are reevaluated during
a simulation. If you have Simulink Coder, for C MEX S-functions, this method is only
valid for simulation, and must be enclosed in a #if defined(MATLAB_MEX_FILE)
statement to be compatible with code generation targets that support noninlined S-
functions.

When a simulation is running, changes to S-function parameters can occur at any time
during the simulation loop, that is, either at the start of a simulation step or during

9-15

9 S-Function Callback Methods — Alphabetical List

a simulation step. When the change occurs during a simulation step, the Simulink
engine calls this routine twice to handle the parameter change. The first call during the
simulation step is used to verify that the parameters are correct. After verifying the new
parameters, the simulation continues using the original parameter values until the next
simulation step, at which time the new parameter values are used. Redundant calls are
needed to maintain simulation consistency.

Note You cannot access the work, state, input, output, and other vectors in this routine.
Use this routine only to validate the parameters. Additional processing of the parameters
should be done in mdlProcessParameters.

Example

This example checks the first S-function parameter to verify that it is a real nonnegative
scalar.

Note Since mdlCheckParameters is an optional method, a #define
MDL_CHECK_PARAMETERS statement precedes the function. Also, since the Simulink
Coder product does not support code generation for mdlCheckParameters, the function
is wrapped in a #if defined(MATLAB_MEX_FILE) statement.

#define PARAM1(S) ssGetSFcnParam(S,0)

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlCheckParameters(SimStruct *S)

{

 if (mxGetNumberOfElements(PARAM1(S)) != 1) {

 ssSetErrorStatus(S,"Parameter to S-function must be a scalar");

 return;

 } else if (mxGetPr(PARAM1(S))[0] < 0) {

 ssSetErrorStatus(S, "Parameter to S-function must be nonnegative");

 return;

 }

}

#endif /* MDL_CHECK_PARAMETERS */

In addition to the preceding routine, you must add a call to this method from
mdlInitializeSizes to check parameters during initialization, because

9-16

 mdlCheckParameters

mdlCheckParameters is only called while the simulation is running. To do this,
after setting the number of parameters you expect in your S-function by using
ssSetNumSFcnParams, use this code in mdlInitializeSizes:

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 1); /* Number of expected parameters */

#if defined(MATLAB_MEX_FILE)

 if(ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S) {

 mdlCheckParameters(S);

 if(ssGetErrorStatus(S) != NULL) return;

 } else {

 return; /* The Simulink engine reports a mismatch error. */

 }

#endif

 ...

}

Note The macro ssGetSFcnParamsCount returns the actual number of parameters
entered in the dialog box.

See sfun_errhdl.c for an example.

See Also

mdlProcessParameters, ssGetSFcnParamsCount, CheckParameters

Introduced before R2006a

9-17

9 S-Function Callback Methods — Alphabetical List

mdlDerivatives
Compute the C MEX S-function's derivatives

Required

No

Languages

C, C++

Syntax
#define MDL_DERIVATIVES

void mdlDerivatives(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method at each time step to compute
the derivatives of the S-function's continuous states. This method should store the
derivatives in the S-function's state derivatives vector. In a C MEX S-function, use
ssGetdX to get a pointer to the derivatives vector.

Each time the mdlDerivatives routine is called, it must explicitly set the values of all
derivatives. The derivative vector does not maintain the values from the last call to this
routine. The memory allocated to the derivative vector changes during execution.

9-18

 mdlDerivatives

Note If you have Simulink Coder, when generating code for a noninlined C MEX S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#define MDL_DERIVATIVES

#if defined(MDL_DERIVATIVES) && defined(MATLAB_MEX_FILE)

static void mdlDerivatives(SimStruct *S)

{

 /* Add mdlDerivatives code here *

}

#endif

The define statement makes the mdlDerivatives method available only to a
MATLAB MEX file. If the S-function is not inlined, the Simulink Coder product cannot
use this method, resulting in link or run-time errors.

Example

For a C MEX S-function example, see csfunc.c.

See Also

ssGetdx, Derivatives

Introduced before R2006a

9-19

9 S-Function Callback Methods — Alphabetical List

mdlDisable
Respond to disabling of an enabled system containing this block

Required

No

Languages

C, C++

Syntax
#define MDL_DISABLE

void mdlDisable(SimStruct *S)

Arguments
S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method if this block resides in an enabled
subsystem and the enabled subsystem changes from an enabled to a disabled state at the
current time step. Your S-function can use this method to perform any actions required
by the disabling of the containing subsystem.

See Also

mdlEnable, Disable

9-20

 mdlDisable

Introduced before R2006a

9-21

9 S-Function Callback Methods — Alphabetical List

mdlEnable
Respond to enabling of a enabled system containing this block

Required

No

Languages

C, C++

Syntax
#define MDL_ENABLE

void mdlEnable(SimStruct *S)

Arguments
S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method if this block resides in an enabled
subsystem and the enabled subsystem changes from a disabled to an enabled state at the
current time step. Your S-function can use this method to perform any actions required
by the enabling of the containing subsystem.

See Also

mdlDisable, Enable

9-22

 mdlEnable

Introduced before R2006a

9-23

9 S-Function Callback Methods — Alphabetical List

mdlGetSimState
Return the C MEX S-function simulation state as a valid MATLAB data structure, such
as a matrix structure or a cell array.

Required
No

Languages
C, C++

Syntax
#define MDL_SIM_STATE

mxArray* mdlGetSimState(SimStruct* S)

Arguments
S

SimStruct representing an S-Function block.

Description
The Simulink engine invokes this custom method to get the simulation state (SimState)
of the model containing S. A call to this method should occur after mdlStart and before
mdlTerminate to ensure that all of the S-function data structures (e.g., states, DWork
vectors, and outputs) are available.

Example
/* Function: mdlGetSimState

9-24

 mdlGetSimState

 * Abstract:

 * Package the RunTimeData structure as a MATLAB structure

 * and return it.

 */

static mxArray* mdlGetSimState(SimStruct* S)

{

 RunTimeData_T* rtd =

 (RunTimeData_T*)ssGetPWorkValue(S, 0);

 const char* fieldNames[] = {"Count"};

 /* Create a MATLAB structure to hold the run-time data */

 mxArray* simSnap =

 mxCreateStructMatrix(1, 1, 1, fieldNames);

 mxSetField(simSnap, 0, fieldNames[0],

 mxCreateDoubleScalar(rtd->cnt));

 return simSnap;

}

See Also

mdlSetSimState, GetSimState

Introduced in R2009a

9-25

9 S-Function Callback Methods — Alphabetical List

mdlGetTimeOfNextVarHit

Specify time of the next sample time hit

Required

No

Languages

C, C++

Syntax

#define MDL_GET_TIME_OF_NEXT_VAR_HIT

void mdlGetTimeOfNextVarHit(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method at a major time step when the
variable sample time registered by this S-function has a hit. This method is used by the
Simulink engine to determine the time of the next sample hit for variable sample time.
The S-function should set this next sample hit using ssSetTNext macro in this method.
The time of the next hit must be greater than the current simulation time as returned by
ssGetT. The S-function must implement mdlGetTimeOfNextVarHit if it operates at a
variable sample time.

9-26

 mdlGetTimeOfNextVarHit

For Level-2 MATLAB S-functions, use a sample time of -2 to specify a variable sample
time. The S-function's output method should then update the NextTimeHit property of
the instance of the Simulink.MSFcnRunTimeBlock class representing the S-Function
block to set the time of the next sample time hit. See /msfcn_vs.m for an example.

For Level-1 MATLAB S-functions, a flag of 4 is passed to the S-function when the next
sample time hit needs to be calculated.

Note The time of the next hit can be a function of the input signals.

Example
 static void mdlGetTimeOfNextVarHit(SimStruct *S)

 {

 time_T offset = getOffset();

 time_T timeOfNextHit = ssGetT(S) + offset;

 ssSetTNext(S, timeOfNextHit);

 }

See Also

mdlInitializeSampleTimes, ssGetT, ssSetTNext

Introduced before R2006a

9-27

9 S-Function Callback Methods — Alphabetical List

mdlInitializeConditions
Initialize the state vectors of this C MEX S-function

Required

No

Languages

C, C++

Syntax
#define MDL_INITIALIZE_CONDITIONS

void mdlInitializeConditions(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method at the beginning of a simulation.
It should initialize the continuous and discrete states, if any, of this S-Function block.
In a C MEX S-function, use ssGetContStates and/or ssGetDiscStates to access
the states. This method can also perform any other initialization activities that this S-
function requires.

Note If you have Simulink Coder and you need to ensure that the initialization code in
the mdlInitializeConditions function is run only once, then move this initialization

9-28

 mdlInitializeConditions

code into the mdlStart method. MathWorks recommends this code change as a best
practice.

If this S-function resides in an enabled subsystem configured to reset states, the
Simulink engine also calls this method when the enabled subsystem restarts execution.
C MEX S-functions can use the ssIsFirstInitCond macro to determine whether the
time at which mdlInitializeCondition is called is equal to the simulation start time.

Note If you have Simulink Coder, when generating code for a noninlined C MEX S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#define MDL_INITIALIZE_CONDITIONS

#if defined(MDL_INITIALIZE_CONDITIONS) && defined(MATLAB_MEX_FILE)

static void mdlInitializeConditions(SimStruct *S)

{

 /* Add mdlInitializeConditions code here */

}

#endif

The define statement makes the mdlInitializeConditions method available only
to a MATLAB MEX file. If the S-function is not inlined, the Simulink Coder product
cannot use this method, resulting in link or run-time errors.

The Simulink engine calls mdlInitializeConditions prior to calculating the S-
function's input signals. Therefore, since the input signal values are not yet available,
mdlInitializeConditions should not use the input signal values to set initial
conditions. If your S-function needs to initialize internal values using the block's input
signals, perform the initialization in mdlOutputs.

For example, in a C MEX S-function, initializes an IWork vector with one element in the
mdlInitializeSizes method.

ssSetNumIWork(S, 1);

The IWork vector holds a flag indicating if initial values have been specified. Initialize
the flag's value in the mdlInitializeCondition method.

static void mdlInitializeConditions(SimStruct *S)

{

9-29

9 S-Function Callback Methods — Alphabetical List

 /* The mdlInitializeConditions method is called when the simulation

 start and every time an enabled subsystem is re-enabled.

 Reset the IWork flag to 1 when values need to be reinitialized.*/

 ssSetIWorkValue(S, 0, 1);

}

Check the value of the IWork vector flag in the mdlOutputs method, to determine if
initial values need to be set. Since the engine has calculated input values at this point in
the simulation, the mdlOutputs method can use them to initialize internal values.

static void mdlOutputs(SimStruct *S, int_T tid)

{

 // Initialize values if the IWork vector flag is true. //

 if (ssGetIWorkValue(S, 0) == 1) {

 // Enter initialization code here //

 }

 // Remainder of mdlOutputs function //

}

For a Level-2 MATLAB S-function, use a DWork vector instead of an IWork vector in the
previous example.

Example

This example initializes both a continuous and discrete state to 1.0.

#define MDL_INITIALIZE_CONDITIONS /*Change to #undef to remove */

 /*function*/

#if defined(MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)

{

 int i;

 real_T *xcont = ssGetContStates(S);

 int_T nCStates = ssGetNumContStates(S);

 real_T *xdisc = ssGetRealDiscStates(S);

 int_T nDStates = ssGetNumDiscStates(S);

 for (i = 0; i < nCStates; i++) {

 *xcont++ = 1.0;

9-30

 mdlInitializeConditions

 }

 for (i = 0; i < nDStates; i++) {

 *xdisc++ = 1.0;

 }

}

#endif /* MDL_INITIALIZE_CONDITIONS */

For another example that initializes only the continuous states, see resetint.c.

See Also

mdlStart, mdlOutputs, ssIsFirstInitCond, ssGetContStates,
ssGetDiscStates, ssGetTStart, ssGetT, InitializeConditions

Introduced before R2006a

9-31

9 S-Function Callback Methods — Alphabetical List

mdlInitializeSampleTimes
Specify the sample rates at which this C MEX S-function operates

Required

Yes

Languages

C, C++

Syntax
#define MDL_INITIALIZE_SAMPLE_TIMES

void mdlInitializeSampleTimes(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

This method should specify the sample time and offset time for each sample rate at
which this S-function operates via the following paired macros

ssSetSampleTime(S, sampleTimeIndex, sample_time)

ssSetOffsetTime(S, offsetTimeIndex, offset_time)

where sampleTimeIndex runs from 0 to one less than the number of sample times
specified in mdlInitializeSizes via ssSetNumSampleTimes.

9-32

 mdlInitializeSampleTimes

If the S-function operates at one or more sample rates, this method can specify any of the
following sample time and offset values for a given sample time:

• [CONTINUOUS_SAMPLE_TIME, 0.0]

• [CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

• [discrete_sample_period, offset]

• [VARIABLE_SAMPLE_TIME, 0.0]

The uppercase values are macros defined in sl_sample_time_defs.h.

If the S-function operates at one rate, this method can alternatively set the sample time
to one of the following sample/offset time pairs.

• [INHERITED_SAMPLE_TIME, 0.0]

• [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

If the number of sample times is 0, the Simulink engine assumes that the S-function
inherits its sample time from the block to which it is connected, i.e., that the sample time
is

[INHERITED_SAMPLE_TIME, 0.0]

This method can therefore return without doing anything.

Use the following guidelines when specifying sample times.

• A continuous function that changes during minor integration steps should set the
sample time to

[CONTINUOUS_SAMPLE_TIME, 0.0]

• A continuous function that does not change during minor integration steps should set
the sample time to

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

• A discrete function that changes at a specified rate should set the sample time to

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

9-33

9 S-Function Callback Methods — Alphabetical List

and

0.0 <= offset < discrete_sample_period

• A discrete function that changes at a variable rate should set the sample time to

[VARIABLE_SAMPLE_TIME, 0.0]

The Simulink engine invokes the mdlGetTimeOfNextVarHit function to get the time
of the next sample hit for the variable-step discrete task.

Note that VARIABLE_SAMPLE_TIME requires a variable-step solver.
• To operate correctly in a triggered subsystem or a periodic system, a discrete S-

function should

• Specify a single sample time set to

[INHERITED_SAMPLE_TIME, 0.0]

• Use ssSetOptions to set the SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME
simulation option in mdlInitializeSizes

• Verify that it was assigned a discrete or triggered sample time in
mdlSetWorkWidths:

if (ssGetSampleTime(S, 0) == CONTINUOUS_SAMPLE_TIME) {

 ssSetErrorStatus(S,

 "This block cannot be assigned a continuous sample

 time");

 }

After propagating sample times throughout the block diagram, the engine assigns the
sample time

[INHERITED_SAMPLE_TIME, INHERITED_SAMPLE_TIME]

to discrete blocks residing in triggered subsystems.

If this function has no intrinsic sample time, it should set its sample time to inherited
according to the following guidelines:

• A function that changes as its input changes, even during minor integration steps,
should set its sample time to

[INHERITED_SAMPLE_TIME, 0.0]

9-34

 mdlInitializeSampleTimes

A function that changes as its input changes, but doesn't change during minor
integration steps (i.e., is held during minor steps) should set its sample time to

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

The S-function should use the ssIsSampleHit or ssIsContinuousTask macros to
check for a sample hit during execution (in mdlOutputs or mdlUpdate). For example,
if the block's first sample time is continuous, the function can use the following code
fragment to check for a sample hit.

if (ssIsContinuousTask(S,tid)) {

}

Note The function receives incorrect results if it uses ssIsSampleHit(S,0,tid).

If the function wants to determine whether the third (discrete) task has a hit, it can use
the following code fragment.

if (ssIsSampleHit(S,2,tid) {

}

Note If you have Simulink Coder, when generating code for a noninlined S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#if defined(MATLAB_MEX_FILE)

static void mdlInitializeSampleTimes(SimStruct *S)

{

 /* Add mdlInitializeSampleTimes code here *

}

#endif

The define statement makes the mdlInitializeSampleTimes method available only
to a MATLAB MEX file. If the S-function is not inlined, the Simulink Coder product
cannot use this method, resulting in link or run-time errors.

See Also
mdlSetInputPortSampleTime, mdlSetOutputPortSampleTime

9-35

9 S-Function Callback Methods — Alphabetical List

Introduced before R2006a

9-36

 mdlInitializeSizes

mdlInitializeSizes
Specify the number of inputs, outputs, states, parameters, and other characteristics of
the C MEX S-function

Required

Yes

Languages

C, C++

Syntax
#define MDL_INITIAL_SIZES

void mdlInitializeSizes(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

This is the first S-function callback methods that the Simulink engine calls. This method
performs the following tasks:

• Specify the number of parameters that this S-function supports, using
ssSetNumSFcnParams.

Use ssSetSFcnParamTunable(S,paramIdx, 0) when a parameter cannot change
during simulation, where paramIdx starts at 0. When a parameter has been specified

9-37

9 S-Function Callback Methods — Alphabetical List

as not tunable, the engine issues an error during simulation (or when in external
mode when using the Simulink Coder product) if an attempt is made to change the
parameter.

• Specify the number of states that this function has, using ssSetNumContStates and
ssSetNumDiscStates.

• Configure the block's input ports, including:

• Specify the number of input ports that this S-function has, using
ssSetNumInputPorts.

• Specify the dimensions of the input ports.

See ssSetInputPortDimensionInfo for more information.
• For each input port, specify whether it has direct feedthrough, using

ssSetInputPortDirectFeedThrough.

A port has direct feedthrough if the input is used in either the mdlOutputs or
mdlGetTimeOfNextVarHit function. The direct feedthrough flag for each input
port can be set to either 1=yes or 0=no. It should be set to 1 if the input, u, is used
in the mdlOutputs or mdlGetTimeOfNextVarHit routine. Setting the direct
feedthrough flag to 0 tells the Simulink engine that u is not used in either of these
S-function routines. Violating this leads to unpredictable results.

• Configure the block's output ports, including:

• Specify the number of output ports that the block has, using
ssSetNumOutputPorts.

• Specify the dimensions of the output ports.

See mdlSetOutputPortDimensionInfo for more information.

If your S-function outputs are discrete (for example, the outputs only take specific
values such as 0, 1, and 2), specify SS_OPTION_DISCRETE_VALUED_OUTPUT.

• Set the number of sample times (i.e., sample rates) at which the block operates.

There are two ways of specifying sample times:

• Port-based sample times
• Block-based sample times

See “Sample Times” on page 8-29 for a complete discussion of sample time issues.

9-38

 mdlInitializeSizes

For multirate S-functions, the suggested approach to setting sample times is via the
port-based sample times method. When you create a multirate S-function, you must
take care to verify that, when slower tasks are preempted, your S-function correctly
manages data so as to avoid race conditions. When port-based sample times are
specified, the block cannot inherit a sample time of Inf at any port.

• Set the size of the block's work vectors, using ssSetNumRWork, ssSetNumIWork,
ssSetNumPWork, ssSetNumModes, ssSetNumNonsampledZCs.

• Set the simulation options that this block implements, using ssSetOptions.

All options have the form SS_OPTION_<name>. See “Information and Options” for
information on each option. Use a bitwise OR operator to set multiple options, as in

ssSetOptions(S, (SS_OPTION_name1 | SS_OPTION_name2))

Note If you have Simulink Coder, when generating code for a noninlined S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#if defined(MATLAB_MEX_FILE)

static void mdlInitializeSizes(SimStruct *S)

{

 /* Add mdlInitializeSizes code here *

}

#endif

The define statement makes the mdlInitializeSizes method available only to a
MATLAB MEX file. If the S-function is not inlined, the Simulink Coder product cannot
use this method, resulting in link or run-time errors.

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates, NumInputs,
NumOutputs, NumRWork, NumIWork, NumPWork, NumModes, and NumNonsampledZCs to
a fixed nonnegative integer or tell the Simulink engine to size them dynamically:

• DYNAMICALLY_SIZED -- Sets lengths of states, work vectors, and so on to values
inherited from the driving block. It sets widths to the actual input widths, according
to the scalar expansion rules unless you use mdlSetWorkWidths to set the widths.

9-39

9 S-Function Callback Methods — Alphabetical List

• 0 or positive number -- Sets lengths (or widths) to the specified values. The default is
0.

Initialization for MATLAB S-Functions

The Level-2 MATLAB S-function setup method performs nearly the same tasks as the C
MEX S-function mdlInitializeSizes method.

Example
static void mdlInitializeSizes(SimStruct *S)

{

 int_T nInputPorts = 1; /* number of input ports */

 int_T nOutputPorts = 1; /* number of output ports */

 int_T needsInput = 1; /* direct feedthrough */

 int_T inputPortIdx = 0;

 int_T outputPortIdx = 0;

 ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

 /*

 * If the number of expected input parameters is not

 * equal to the number of parameters entered in the

 * dialog box, return. The Simulink engine generates an

 * error indicating that there is aparameter mismatch.

 */

 return;

 }else {

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL)

 return;

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 0);

 /*

 * Configure the input ports. First set the number of input

9-40

 mdlInitializeSizes

 * ports.

 */

 if (!ssSetNumInputPorts(S, nInputPorts)) return;

 /*

 * Set input port dimensions for each input port index

 * starting at 0.

 */

 if(!ssSetInputPortDimensionInfo(S, inputPortIdx,

 DYNAMIC_DIMENSION)) return;

 /*

 * Set direct feedthrough flag (1=yes, 0=no).

 */

 ssSetInputPortDirectFeedThrough(S, inputPortIdx, needsInput);

 /*

 * Configure the output ports. First set the number of

 * output ports.

 */

 if (!ssSetNumOutputPorts(S, nOutputPorts)) return;

 /*

 * Set output port dimensions for each output port index

 * starting at 0.

 */

 if(!ssSetOutputPortDimensionInfo(S,outputPortIdx,

 DYNAMIC_DIMENSION)) return;

 /*

 * Set the number of sample times. */

 ssSetNumSampleTimes(S, 1);

 /*

 * Set size of the work vectors.

 */

 ssSetNumRWork(S, 0); /* real vector */

 ssSetNumIWork(S, 0); /* integer vector */

 ssSetNumPWork(S, 0); /* pointer vector */

 ssSetNumModes(S, 0); /* mode vector */

 ssSetNumNonsampledZCs(S, 0); /* zero crossings */

 ssSetOptions(S, 0);

} /* end mdlInitializeSizes */

9-41

9 S-Function Callback Methods — Alphabetical List

See Also

setup, mdlInitializeSampleTimes

Introduced before R2006a

9-42

 mdlOutputs

mdlOutputs
Compute the signals that this block emits

Required

Yes

Languages

C, C++

Syntax
#define MDL_OUTPUTS

void mdlOutputs(SimStruct *S, int_T tid)

Arguments

S

SimStruct representing an S-Function block.
tid

Task ID.

Description

The Simulink engine invokes this required method at each simulation time step. The
method should compute the S-function's outputs at the current time step and store the
results in the S-function's output signal arrays.

The tid (task ID) argument specifies the task running when the mdlOutputs routine
is invoked. You can use this argument in the mdlOutputs routine of a multirate S-

9-43

9 S-Function Callback Methods — Alphabetical List

Function block to encapsulate task-specific blocks of code (see “Multirate S-Function
Blocks” on page 8-40).

Use the UNUSED_ARG macro if the S-function does not contain task-specific blocks of
code to indicate that the tid input argument is required but not used in the body of the
callback. To do this, insert the line

UNUSED_ARG(tid)

after the declarations in mdlOutputs.

Note If you have Simulink Coder, when generating code for a noninlined S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#if defined(MATLAB_MEX_FILE)

static void mdlOutputs(SimStruct *S)

{

 /* Add mdlOutputs code here *

}

#endif

The define statement makes the mdlOutputs method available only to a MATLAB
MEX file. If the S-function is not inlined, the Simulink Coder product cannot use this
method, resulting in link or run-time errors.

Example

For an example of an mdlOutputs routine that works with multiple input and output
ports, see sfun_multiport.c.

See Also

ssGetOutputPortComplexSignal, ssGetOutputPortRealSignal,
ssGetOutputPortSignal, Outputs

Introduced before R2006a

9-44

 mdlProcessParameters

mdlProcessParameters
Process the C MEX S-function's parameters

Required

No

Languages

C, C++

Syntax

#define MDL_PROCESS_PARAMETERS

void mdlProcessParameters(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

This is an optional routine that the Simulink engine calls after mdlCheckParameters
changes and verifies parameters. The processing is done at the top of the simulation
loop when it is safe to process the changed parameters. This function is only
valid for simulation. C MEX S-functions must enclose the method in a #if
defined(MATLAB_MEX_FILE) statement.

The purpose of this routine is to process newly changed parameters. An example is to
cache parameter changes in work vectors. The engine does not call this routine when it is

9-45

9 S-Function Callback Methods — Alphabetical List

used with the Simulink Coder product. Therefore, if you use this routine in an S-function
designed for use with the Simulink Coder product, you must write your S-function so
that it doesn't rely on this routine. To do this, you must inline your S-function by using
the Target Language Compiler. For information on inlining S-functions, see “Inlining S-
Functions” (Simulink Coder).

Example

This example processes a character vector parameter that mdlCheckParameters
has verified to be of the form '+++' (where there could be any number of '+' or '-'
characters).

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

 {

 int_T i;

 char_T *plusMinusStr;

 int_T nInputPorts = ssGetNumInputPorts(S);

 int_T *iwork = ssGetIWork(S);

 if ((plusMinusStr=(char_T*)malloc(nInputPorts+1)) == NULL) {

 ssSetErrorStatus(S,"Memory allocation error in mdlStart");

 return;

 }

 if (mxGetString(SIGNS_PARAM(S),plusMinusStr,nInputPorts+1) != 0) {

 free(plusMinusStr);

 ssSetErrorStatus(S,"mxGetString error in mdlStart");

 return;

 }

 for (i = 0; i < nInputPorts; i++) {

 iwork[i] = plusMinusStr[i] == '+'? 1: -1;

 }

 free(plusMinusStr);

 }

#endif /* MDL_PROCESS_PARAMETERS */

mdlProcessParameters is called from mdlStart to load the signs character vector
prior to the start of the simulation loop.

#define MDL_START

#if defined(MDL_START)

9-46

 mdlProcessParameters

static void mdlStart(SimStruct *S)

{

 mdlProcessParameters(S);

}

#endif /* MDL_START */

See Also

mdlCheckParameters, ProcessParameters

Introduced before R2006a

9-47

9 S-Function Callback Methods — Alphabetical List

mdlProjection
Perturb the solver's solution of a system's states to better satisfy time-invariant solution
relationships

Required

No

Languages

C, C++

Syntax
#define MDL_PROJECTION

void mdlProjection(SimStruct *S)

Arguments
S

SimStruct representing an S-Function block.

Description

This method is intended for use with S-functions that model dynamic systems whose
states satisfy time-invariant relationships, such as those resulting from mass or energy
conservation or other physical laws. The Simulink engine invokes this method at each
time step after the model's solver has computed the S-function's states for that time step.
Typically, slight errors in the numerical solution of the states cause the solutions to fail
to satisfy solution invariants exactly. Your mdlProjection method can compensate
for the errors by perturbing the states so that they more closely approximate solution
invariants at the current time step. As a result, the numerical solution adheres more

9-48

 mdlProjection

closely to the ideal solution as the simulation progresses, producing a more accurate
overall simulation of the system modeled by your S-function.

Your mdlProjection method's perturbations of system states must fall within the
solution error tolerances specified by the model in which the S-function is embedded.
Otherwise, the perturbations may invalidate the solver's solution. It is up to your
mdlProjection method to ensure that the perturbations meet the error tolerances
specified by the model. See “Perturbing a System's States Using a Solution Invariant” on
page 9-49 for a simple method for perturbing a system's states. The following articles
describe more sophisticated perturbation methods that your mdlProjection method
can use.

• C.W. Gear, “Maintaining Solution Invariants in the Numerical Solution of ODEs,”
Journal on Scientific and Statistical Computing, Vol. 7, No. 3, July 1986.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of ODEs I,”
Computers and Mathematics with Applications, Vol. 12B, 1986, pp. 1287–1296.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of ODEs II,”
Computers and Mathematics with Applications, Vol. 38, 1999, pp. 61–72.

Example

Perturbing a System's States Using a Solution Invariant

Here is a simple, Taylor-series-based approach to perturbing a system's states. Suppose
your S-function models a dynamic system having a solution invariant, g X t(,) , i.e., g is
a continuous, differentiable function of the system states, X , and time, t , whose value is
constant with time. Then

X X J J J R
n n n

T

n n

T

n
@ +

-*
()

1

where

• X
n is the system's ideal state vector at the solver's current time step

•
X

n

* is the approximate state vector computed by the solver at the current time step

• J
n is the Jacobian of the invariant function evaluated at the point in state space

specified by the approximate state vector at the current time step:

9-49

9 S-Function Callback Methods — Alphabetical List

J
g

X
X tn n n=

∂

∂
(,)*

• t
n

 is the time at the current time step

• R
n is the residual (difference) between the invariant function evaluated at X

n and

X
n

* at the current time step:

R g X t g X tn n n n n= -(,) (,)*

Note: The value of g X tn n(,) is the same at each time step and is known by definition.

Given a continuous, differentiable invariant function for the system that your S-function
models, this formula allows your S-function's mdlProjection method to compute a
perturbation

J J J R
n

T

n n

T

n
()

-1

of the solver's numerical solution, X
n

* , that more closely matches the ideal solution, X
n ,

keeping the S-function's solution from drifting from the ideal solution as the simulation
progresses.

MATLAB Example

This example illustrates how the perturbation method outlined in the previous section
can keep a model's numerical solution from drifting from the ideal solution as a
simulation progresses. Consider the following model,mdlProjectionEx1:

9-50

 mdlProjection

The PredPrey block references an S-function, predprey_noproj.m, that uses the Lotka-
Volterra equations

&

&

x ax y

y cy x

= -

= - -

()

()

1

1

to model predator-prey population dynamics, where x t() is the population density of the
predators and y t() is the population density of prey. The ideal solution to the predator-
prey ODEs satisfies the time-invariant function

x e y e dc cx a ay- -

=

where a , c , and d are constants. The S-function assumes a = 1, c = 2, and d =
121.85.

The Invariant Residual block in this model computes the residual between the invariant
function evaluated along the system's ideal trajectory through state space and its
simulated trajectory:

R d x e y en n
c cx

n
a ayn n

= -
- -

where x
n

and y
n

are the values computed by the model's solver for the predator and prey
population densities, respectively, at the current time step. Ideally, the residual should
be zero throughout simulation of the model, but simulating the model reveals that the
residual actually strays considerably from zero:

9-51

9 S-Function Callback Methods — Alphabetical List

Now consider the following model, mdlProjectionEx2:

This model is the same as the previous model, except that its S-function, predprey.m,
includes a mdlProjection method that uses the perturbation approach outlined
in “Perturbing a System's States Using a Solution Invariant” on page 9-49 to

9-52

 mdlProjection

compensate for numerical drift. As a result, the numerical solution more closely tracks
the ideal solution as the simulation progresses as demonstrated by the residual signal,
which remains near or at zero throughout the simulation:

See Also

Projection

Introduced in R2006b

9-53

9 S-Function Callback Methods — Alphabetical List

mdlRTW
Generate code generation data for a C MEX S-function

Required

No

Languages

C, C++

Syntax
#define MDL_RTW

void mdlRTW(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

This function is called when the Simulink Coder product is generating the model.rtw
file. In C MEX S-functions, you can call the following functions that add fields to the
model.rtw file:

• ssWriteRTWParameters

• ssWriteRTWParamSettings

• ssWriteRTWWorkVect

• ssWriteRTWStr

9-54

 mdlRTW

• ssWriteRTWStrParam

• ssWriteRTWScalarParam

• ssWriteRTWStrVectParam

• ssWriteRTWVectParam

• ssWriteRTW2dMatParam

• ssWriteRTWMxVectParam

• ssWriteRTWMx2dMatParam

In C MEX S-functions, this function must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

Example

See the S-function sfun_multiport.c in the Simulink model sldemo_msfcn_lms for
an example.

See Also

ssSetErrorStatus, WriteRTW

Introduced before R2006a

9-55

9 S-Function Callback Methods — Alphabetical List

mdlSetDefaultPortComplexSignals
Set the numeric types (real, complex, or inherited) of ports whose numeric types cannot
be determined from block connectivity

Required

No

Languages

C, C++

Syntax
#define MDL_SET_DEFAULT_PORT_COMPLEX_SIGNALS

void mdlSetDefaultPortComplexSignals(SimStruct *S)

Arguments
S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this method if the block has ports whose numeric types
cannot be determined from connectivity. (This usually happens when the block is
unconnected or is part of a feedback loop.) This method must set the numeric types of
all ports whose numeric types are not set. This method is only valid for simulation, and
must be enclosed in a #if defined(MATLAB_MEX_FILE) statement.

If the block does not implement this method and at least one port is known to be complex,
the engine sets the unknown ports to COMPLEX_YES; otherwise, it sets the unknown
ports to COMPLEX_NO.

9-56

 mdlSetDefaultPortComplexSignals

See Also

ssSetOutputPortComplexSignal, ssSetInputPortComplexSignal

Introduced before R2006a

9-57

9 S-Function Callback Methods — Alphabetical List

mdlSetDefaultPortDataTypes
Set the data types of ports whose data types cannot be determined from block
connectivity

Required

No

Languages

C, C++

Syntax
#define MDL_SET_DEFAULT_PORT_DATA_TYPES

void mdlSetDefaultPortDataTypes(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this method if the block has ports whose data types
cannot be determined from block connectivity. (This usually happens when the block is
unconnected or is part of a feedback loop.) This method must set the data types of all
ports whose data types are not set. This method is only valid for simulation, and must be
enclosed in a #if defined(MATLAB_MEX_FILE) statement.

If the block does not implement this method and the engine cannot determine the data
types of any of its ports, the engine sets the data types of all the ports to double. If the

9-58

 mdlSetDefaultPortDataTypes

block does not implement this method and the engine cannot determine the data types of
some, but not all, of its ports, the engine sets the unknown ports to the data type of the
port whose data type has the largest size.

The engine invokes an error if the mdlSetDefaultPortDataType method attempts
to modify the data type of a port when the data type was previously specified by
mdlSetInputPortDataType or mdlSetOutputPortDataType. If an S-function has
multiple input or output ports, mdlSetDefaultPortDataType should check if the
data type of a port is still dynamic before attempting to set the type. For example, the
mdlSetDefaultPortDataType uses the following lines to check if the data type of the
second input port is still unknown.

 if (ssGetInputPortDataType(S, 1) == DYNAMICALLY_TYPED) {

 ssSetInputPortDataType(S, 1, SS_UINT8);

 }

See Also

ssSetOutputPortDataType, ssSetInputPortDataType

Introduced before R2006a

9-59

9 S-Function Callback Methods — Alphabetical List

mdlSetDefaultPortDimensionInfo

Set the default dimensions of the signals accepted or emitted by a C MEX S-function's
ports

Required

No

Languages

C, C++

Syntax

#define MDL_SET_DEFAULT_PORT_DIMENSION_INFO

void mdlSetDefaultPortDimensionInfo(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine calls this method during signal dimension propagation when
a model does not supply enough information to determine the dimensionality of
signals that can enter or leave the block represented by S. This method should set
the dimensions of any input and output ports that are dynamically sized to default
values. This method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

9-60

 mdlSetDefaultPortDimensionInfo

If the S-function does not implement this method, the engine tries to find a set of
dimensions that will satisfy the dimension propagation rules implemented using
mdlSetInputPortDimensionInfo and mdlSetOutputPortDimensionInfo. This
process might not be able to produce a valid set of dimensions for S-functions with special
dimension requirements.

The engine invokes an error if the mdlSetDefaultPortDimensionInfo
method attempts to modify the dimensions of a port when the dimensions
were previously specified by mdlSetInputPortDimensionInfo or
mdlSetOutputPortDimensionInfo. If an S-function has multiple input or output
ports, mdlSetDefaultPortDimensionInfo should check if the dimensions of the
port are still dynamic before attempting to set the dimensions. For example, the
mdlSetDefaultPortDimensionInfo uses the following lines to check if the dimensions
of the first output port are still unknown.

 if (ssGetOutputPortWidth(S, 0) == DYNAMICALLY_SIZED) {

 ssSetOutputPortMatrixDimensions(S, 0, 1, 1);

 }

Example

See sfun_matadd.c for an example of how to use this function.

See Also

ssSetErrorStatus, ssSetOutputPortMatrixDimensions

Introduced before R2006a

9-61

9 S-Function Callback Methods — Alphabetical List

mdlSetInputPortComplexSignal
Set the numeric types (real, complex, or inherited) of the signals accepted by an input
port

Required

No

Languages

C, C++

Syntax
#define MDL_SET_INPUT_PORT_COMPLEX_SIGNAL

void mdlSetInputPortComplexSignal(SimStruct *S, int_T port,

 CSignal_T csig)

Arguments
S

SimStruct representing an S-Function block.
port

Index of a port.
csig

Numeric type of signal, either COMPLEX_NO (real) or COMPLEX_YES (complex).

Description

The Simulink engine calls this routine to set the input port numeric type for inputs that
have this attribute set to COMPLEX_INHERITED. The input csig is the proposed numeric

9-62

 mdlSetInputPortComplexSignal

type for this input port. This method is only valid for simulation. C MEX S-functions
must enclosed this method in a #if defined(MATLAB_MEX_FILE) statement.

The S-function must check whether the proposed numeric type is a valid type for the
specified port. If it is valid, a C MEX S-function sets the numeric type of the specified
input port using ssSetInputPortComplexSignal. Otherwise, it reports an error using
ssSetErrorStatus.

The S-function can also set the numeric types of other input and output ports with
inherited numeric types. The engine reports an error if the S-function changes the
numeric type of a port whose numeric type is known.

If the S-function does not implement this routine, the engine assumes that the S-function
accepts a real or complex signal and sets the input port numeric type to the specified
value.

The engine calls this method until all input ports with inherited numeric types have
their numeric types specified.

Example

See sdotproduct.c for an example of how to use this function.

See Also

ssSetErrorStatus, ssSetInputPortComplexSignal,
SetInputPortComplexSignal

Introduced before R2006a

9-63

9 S-Function Callback Methods — Alphabetical List

mdlSetInputPortDataType
Set the data types of the signals accepted by an input port

Required

No

Languages

C, C++

Syntax
#define MDL_SET_INPUT_PORT_DATA_TYPE

void mdlSetInputPortDataType(SimStruct *S, int_T port,

 DTypeId id)

Arguments

S

SimStruct representing an S-Function block.
port

Index of a port.
id

Data type ID.

Description

The Simulink engine calls this routine to set the data type of port when port has
an inherited data type. The data type id is the proposed data type for this port. Data

9-64

 mdlSetInputPortDataType

type IDs for the built-in data types can be found in simstruc_types.h. This method
is only valid for simulation. C MEX S-functions must enclose this method in a #if
defined(MATLAB_MEX_FILE) statement.

The S-function must check whether the specified data type is a valid data type for the
specified port. If it is a valid data type, a C MEX S-functions sets the data type of the
input port using ssSetInputPortDataType. Otherwise, it reports an error using
ssSetErrorStatus.

The S-function can also set the data types of other input and output ports if they are
unknown. The engine reports an error if the S-function changes the data type of a port
whose data type has been set.

If the block does not implement this routine, the engine assumes that the block accepts
any data type and sets the input port data type to the specified value.

The engine calls this method until all input ports with inherited data types have their
data types specified.

See Also

ssSetErrorStatus, ssSetInputPortDataType, SetInputPortDataType

Introduced before R2006a

9-65

9 S-Function Callback Methods — Alphabetical List

mdlSetInputPortDimensionInfo
Set the dimensions of the signals accepted by an input port

Required

No

Languages

C, C++

Syntax
#define MDL_SET_INPUT_PORT_DIMENSION_INFO

void mdlSetInputPortDimensionInfo(SimStruct *S, int_T port,

 const DimsInfo_T *dimsInfo)

Arguments
S

SimStruct representing an S-Function block.
port

Index of a port.
dimsInfo

Structure that specifies the signal dimensions supported by the port.

See ssSetInputPortDimensionInfo for a description of this structure.

Description

The Simulink engine calls this method during dimension propagation with
candidate dimensions dimsInfo for port. In C MEX S-functions, if the proposed

9-66

 mdlSetInputPortDimensionInfo

dimensions are acceptable, the method sets the actual port dimensions, using
ssSetInputPortDimensionInfo. If they are unacceptable, the method generates an
error via ssSetErrorStatus.

This method is only valid for simulation. A C MEX S-function must enclose the method in
a #if defined(MATLAB_MEX_FILE) statement.

Note This method can set the dimensions of any other input or output port whose
dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. For C MEX
S-functions, if the engine cannot completely determine the dimensionality
from port connectivity, it invokes mdlSetDefaultPortDimensionInfo.
If an S-function can fully determine the port dimensionality from partial
information, set the option SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL in
mdlInitializeSizes, using ssSetOptions. If this option is set, the engine invokes
mdlSetInputPortDimensionInfo even if it can only partially determine the
dimensionality of the input port from connectivity.

The engine calls this method until all input ports with inherited dimensions have their
dimensions specified.

Example

See sfun_matadd.c for an example of how to use this function.

See Also

ssSetErrorStatus, mdlSetOutputPortDimensionInfo,
SetInputPortDimensions

Introduced before R2006a

9-67

9 S-Function Callback Methods — Alphabetical List

mdlSetInputPortDimensionsModeFcn
Propagate the dimensions mode

Required

No

Languages

C, C++

Syntax
void mdlSetInputPortDimensionsModeFcn(SimStruct *S, int_T portIdx,

DimensionsMode_T dimsMode)

Arguments

S

SimStruct representing an S-Function block.
portIdx

Index of a port.
dimsMode

Current dimensions mode. Possible values are INHERIT_DIMS_MODE,
FIXED_DIMS_MODE, and VARIABLE_DIMS_MODE

Description

The Simulink engine calls this optional method to enable this S-function to set the
dimensions mode of the input port indexed by portIdx.

9-68

 mdlSetInputPortDimensionsModeFcn

C Example

See sfun_varsize_holdStatesUntilReset.c for an example of how to use this
function.

See Also

mdlSetInputPortDimensionInfo, SetInputPortDimensionsMode

Introduced in R2009b

9-69

9 S-Function Callback Methods — Alphabetical List

mdlSetInputPortSampleTime

Set the sample time of an input port that inherits its sample time from the port to which
it is connected

Required

No

Languages

C, C++

Syntax

#define MDL_SET_INPUT_PORT_SAMPLE_TIME

void mdlSetInputPortSampleTime(SimStruct *S, int_T port,

 real_T sampleTime, real_T offsetTime)

Arguments

S

SimStruct representing an S-Function block.
port

Index of a port.
sampleTime

Inherited sample time for port.
offsetTime

Inherited offset time for port.

9-70

 mdlSetInputPortSampleTime

Description
The Simulink engine invokes this method with the sample time that port inherits from
the port to which it is connected.

For C MEX S-functions, if the inherited sample time is acceptable, this method sets
the sample time of port to the inherited time, using ssSetInputPortSampleTime
and ssSetInputPortOffsetTime. If the sample time is unacceptable, this
method generates an error via ssSetErrorStatus. Note that any other input
or output ports whose sample times are implicitly defined by virtue of knowing
the sample time of the given port can also have their sample times set via calls to
ssSetInputPortSampleTime or ssSetOutputPortSampleTime. This method is only
valid for simulation, and must be enclosed in a #if defined(MATLAB_MEX_FILE)
statement.

The engine calls this method until all input ports with inherited sample times are
specified.

When inherited port-based sample times are specified, the sample time is guaranteed to
be one of the following where 0.0 < period < inf and 0.0 <= offset < period.

 Sample Time Offset Time

Continuous 0.0 0.0

Discrete period offset

Constant, triggered, and variable-step sample times are not propagated to S-functions
with port-based sample times.

Generally mdlSetInputPortSampleTime is called once per port with the input port
sample time. However, there can be cases where this function is called more than once.
This happens when the simulation engine is converting continuous sample times to
continuous but fixed in minor steps sample times. When this occurs, the original values
of the sample times specified in mdlInitializeSizes are restored before this method
is called again.

The final sample time specified at the port can be different from (but equivalent to) the
sample time specified by this method. This occurs when

• The model uses a fixed-step solver and the port has a continuous but fixed in minor
step sample time. In this case, the Simulink engine converts the sample time to the
fundamental sample time for the model.

9-71

9 S-Function Callback Methods — Alphabetical List

• The engine adjusts the sample time to be as numerically sound as possible. For
example, the engine converts [0.2499999999999, 0] to [0.25, 0].

The S-function can examine the final sample times in mdlInitializeSampleTimes.

See Also

ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlInitializeSampleTimes, SetInputPortSampleTime

Introduced before R2006a

9-72

 mdlSetInputPortWidth

mdlSetInputPortWidth
Set the width of an input port that accepts 1-D (vector) signals

Required

No

Languages

C, C++

Syntax
#define MDL_SET_INPUT_PORT_WIDTH

void mdlSetInputPortWidth(SimStruct *S, int_T port, int_T width)

Arguments

S

SimStruct representing an S-Function block.
port

Index of a port.
width

Width of signal.

Description

This method is called with the candidate width for a dynamically sized port. If the
proposed width is acceptable, the method should set the actual port width using
ssSetInputPortWidth. If the size is unacceptable, an error should be generated

9-73

9 S-Function Callback Methods — Alphabetical List

via ssSetErrorStatus. Note that any other dynamically sized input or output
ports whose widths are implicitly defined by virtue of knowing the width of the
given port can also have their widths set via calls to ssSetInputPortWidth or
ssSetOutputPortWidth. This method is only valid for simulation, and must be
enclosed in a #if defined(MATLAB_MEX_FILE) statement.

The Simulink engine invokes this method until all dynamically sized input ports are
configured.

See Also

ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

Introduced before R2006a

9-74

 mdlSetOutputPortComplexSignal

mdlSetOutputPortComplexSignal
Set the numeric types (real, complex, or inherited) of the signals accepted by an output
port

Required

No

Languages

C, C++

Syntax
#define MDL_SET_OUTPUT_PORT_COMPLEX_SIGNAL

void mdlSetOutputPortComplexSignal(SimStruct *S, int_T port,

 CSignal_T csig)

Arguments
S

SimStruct representing an S-Function block.
port

Index of a port.
csig

Numeric type of signal, either COMPLEX_NO (real) or COMPLEX_YES (complex).

Description

The Simulink engine calls this routine to set the output port numeric type for outputs
that have this attribute set to COMPLEX_INHERITED. The input argument csig is the

9-75

9 S-Function Callback Methods — Alphabetical List

proposed numeric type for this output port. The S-function must check whether the
specified numeric type is a valid type for the specified port.

If it is valid, C MEX S-functions set the numeric type of the specified output port using
ssSetOutputPortComplexSignal. Otherwise, the S-function reports an error, using
ssSetErrorStatus. This method is only valid for simulation. C MEX S-functions must
enclose the method in a #if defined(MATLAB_MEX_FILE) statement.

The S-function can also set the numeric types of other input and output ports with
unknown numeric types. The engine reports an error if the S-function changes the
numeric type of a port whose numeric type is known.

If the S-function does not implement this routine, the engine assumes that the S-function
accepts a real or complex signal and sets the output port numeric type to the specified
value.

The engine calls this method until all output ports with inherited numeric types have
their numeric types specified.

Example

See sdotproduct.c for an example of how to use this function.

See Also

ssSetOutputPortComplexSignal, ssSetErrorStatus,
SetOutputPortComplexSignal

Introduced before R2006a

9-76

 mdlSetOutputPortDataType

mdlSetOutputPortDataType
Set the data type of the signals emitted by an output port

Required

No

Languages

C, C++

Syntax
#define MDL_SET_OUTPUT_PORT_DATA_TYPE

void mdlSetOutputPortDataType(SimStruct *S, int_T port,

 DTypeId id)

Arguments

S

SimStruct representing an S-Function block.
port

Index of an output port.
id

Data type ID.

Description

The Simulink engine calls this routine to set the data type of port when port has an
inherited data type. The data type ID id is the proposed data type for this port. Data

9-77

9 S-Function Callback Methods — Alphabetical List

type IDs for the built-in data types can be found in simstruc_types.h. The S-function
must check whether the specified data type is a valid data type for the specified port.

If it is a valid data type, a C MEX S-function sets the data type of port using
ssSetOutputPortDataType. Otherwise, the S-function reports an error, using
ssSetErrorStatus. This method is only valid for simulation. C MEX S-functions must
enclose the method in a #if defined(MATLAB_MEX_FILE) statement.

The S-function can also set the data types of other input and output ports if their data
types have not been set. The engine reports an error if the S-function changes the data
type of a port whose data type has been set.

If the block does not implement this method, the engine assumes that the block supports
any data type and sets the output port data type to the specified value.

The engine calls this method until all output ports with inherited data types have their
data types specified.

See Also

ssSetOutputPortDataType, ssSetErrorStatus, SetOutputPortDataType

Introduced before R2006a

9-78

 mdlSetOutputPortDimensionInfo

mdlSetOutputPortDimensionInfo
Set the dimensions of the signals accepted by an output port

Required

No

Languages

C, C++

Syntax
#define MDL_SET_OUTPUT_PORT_DIMENSION_INFO

void mdlSetOutputPortDimensionInfo(SimStruct *S, int_T port,

 const DimsInfo_T *dimsInfo)

Arguments
S

SimStruct representing an S-Function block.
port

Index of a port.
dimsInfo

Structure that specifies the signal dimensions supported by port.

See ssSetInputPortDimensionInfo for a description of this structure.

Description

The Simulink engine calls this method with candidate dimensions dimsInfo for port.
In C MEX S-functions, if the proposed dimensions are acceptable, the method sets

9-79

9 S-Function Callback Methods — Alphabetical List

the actual port dimensions, using ssSetOutputPortDimensionInfo. If they are
unacceptable, the method generates an error via ssSetErrorStatus. This method
is only valid for simulation. C MEX S-functions must enclose the method in a #if
defined(MATLAB_MEX_FILE) statement.

Note This method can set the dimensions of any other input or output port whose
dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. In C MEX S-
functions, if the engine cannot completely determine the dimensionality
from port connectivity, it invokes mdlSetDefaultPortDimensionInfo.
If an S-function can fully determine the port dimensionality from partial
information, set the option SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL in
mdlInitializeSizes, using ssSetOptions. If this option is set, the engine invokes
mdlSetOutputPortDimensionInfo even if it can only partially determine the
dimensionality of the output port from connectivity.

The engine calls this method until all output ports with inherited dimensions have their
dimensions specified.

Example

See sfun_matadd.c for an example of how to use this function.

See Also

ssSetErrorStatus, ssSetOutputPortDimensionInfo,
SetOutputPortDimensions

Introduced before R2006a

9-80

 mdlSetOutputPortSampleTime

mdlSetOutputPortSampleTime

Set the sample time of an output port that inherits its sample time from the port to
which it is connected

Required

No

Languages

C, C++

Syntax

#define MDL_SET_OUTPUT_PORT_SAMPLE_TIME

void mdlSetOutputPortSampleTime(SimStruct *S, int_T port,

 real_T sampleTime, real_T offsetTime)

Arguments

S

SimStruct representing an S-Function block.
port

Index of a port.
sampleTime

Inherited sample time for port.
offsetTime

Inherited offset time for port.

9-81

9 S-Function Callback Methods — Alphabetical List

Description

The Simulink engine calls this method with the sample time that port inherits from the
port to which it is connected.

For C MEX S-functions, if the inherited sample time is acceptable, this method
should set the sample time of port to the inherited sample time and offset time,
using ssSetOutputPortSampleTime and ssSetOutputPortOffsetTime. If the
sample time is unacceptable, this method generates an error via ssSetErrorStatus.
This method is only valid for simulation, and must be enclosed in a #if
defined(MATLAB_MEX_FILE) statement.

This method can set the sample time of any other input or output port whose sample
time derives from the sample time of port, using ssSetInputPortSampleTime or
ssSetOutputPortSampleTime in C MEX S-functions.

Normally, sample times are propagated forward; however, if sources feeding this block
have inherited sample times, the engine might choose to back-propagate known sample
times to this block. When back-propagating sample times, this method is called in
succession for all inherited output port signals.

See mdlSetInputPortSampleTime for more information about when this method is
called.

See Also

ssSetErrorStatus, ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlSetInputPortSampleTime, SetOutputPortSampleTime

Introduced before R2006a

9-82

 mdlSetOutputPortWidth

mdlSetOutputPortWidth
Set the width of an output port that outputs 1-D (vector) signals

Required

No

Languages

C, C++

Syntax
#define MDL_SET_OUTPUT_PORT_WIDTH

void mdlSetOutputPortWidth(SimStruct *S, int_T port,

 int_T width)

Arguments

S

SimStruct representing an S-Function block.
port

Index of a port.
width

Width of signal.

Description

This method is called with the candidate width for a dynamically sized port. If the
proposed width is acceptable, the method should go ahead and set the actual port

9-83

9 S-Function Callback Methods — Alphabetical List

width, using ssSetOutputPortWidth. If the size is unacceptable, an error should
be generated via ssSetErrorStatus. Note that any other dynamically sized input
or output ports whose widths are implicitly defined by virtue of knowing the width
of the given port can also have their widths set via calls to ssSetInputPortWidth
or ssSetOutputPortWidth. This method is only valid for simulation, and must be
enclosed in a #if defined(MATLAB_MEX_FILE) statement.

See Also

ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

Introduced before R2006a

9-84

 mdlSetSimState

mdlSetSimState
Set the simulation state of the C MEX S-function by restoring the SimState.

Required
No

Languages
C, C++

Syntax
#define MDL_SIM_STATE

void mdlSetSimState(SimStruct* S, const mxArray* in)

Arguments
S

SimStruct representing an S-Function block.
const mxArray* in

Any valid MATLAB data.

Description
The Simulink engine invokes this custom method at the beginning of a simulation of the
model containing S . Simulink sets the initial simulation state of the S-function to the
SimState of the model.

Example
/* Function: mdlSetSimState

9-85

9 S-Function Callback Methods — Alphabetical List

 * Abstract:

 * Unpack the MATLAB structure passed and restore it to

 * the RunTimeData structure

 */

static void mdlSetSimState(SimStruct* S,

const mxArray* simSnap)

{

 RunTimeData_T* rtd =

 (RunTimeData_T*)ssGetPWorkValue(S, 0);

 /* Check and load the count value */

 {

 const mxArray* cnt =

 mxGetField(simSnap, 0, fieldNames[0]);

 ERROR_IF_NULL(S,cnt,

 "Count field not found in simulation state");

 if (mxIsComplex(cnt) ||

 !mxIsUint64(cnt) ||

 mxGetNumberOfElements(cnt) != 1) {

 ssSetErrorStatus(S, "Count field is invalid");

 return;

 }

 rtd->cnt = ((uint64_T*)(mxGetData(cnt)))[0];

 }

}

See Also

mdlInitializeConditions, mdlGetSimState, SetSimState

Introduced in R2009a

9-86

 mdlSetWorkWidths

mdlSetWorkWidths
Specify the sizes of the work vectors and create the run-time parameters required by this
C MEX S-function

Required

No

Languages

C, C++

Syntax
#define MDL_SET_WORK_WIDTHS

void mdlSetWorkWidths(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine calls this optional method to enable this S-function to set the
sizes of state and work vectors that it needs to store global data and to create run-
time parameters (see “Run-Time Parameters” on page 8-7). The engine invokes
this method after it has determined the input port width, output port width, and
sample times of the S-function. This allows the S-function to size the state and work
vectors based on the number and sizes of inputs and outputs and/or the number of
sample times. This method specifies the state and work vector sizes via the macros

9-87

9 S-Function Callback Methods — Alphabetical List

ssGetNumContStates, ssSetNumDiscStates, ssSetNumRWork, ssSetNumIWork,
ssSetNumPWork, ssSetNumModes, and ssSetNumNonsampledZCs.

A C-MEX S-function needs to implement this method only if it does not know the
sizes of all the work vectors it requires when the engine invokes the function's
mdlInitializeSizes method. If this S-function implements mdlSetWorkWidths,
it should initialize the sizes of any work vectors that it needs to DYNAMICALLY_SIZED
in mdlInitializeSizes, even for those whose exact size it knows at that point. The
S-function should then specify the actual size in mdlSetWorkWidths. This method is
only valid for simulation, and must be enclosed in a #if defined(MATLAB_MEX_FILE)
statement.

Example

For a full example of a C MEX S-function using DWork vectors, see the file
sfun_rtwdwork.c used in the Simulink model sfcndemo_sfun_rtwdwork.

See Also

mdlInitializeSizes, PostPropagationSetup

Introduced before R2006a

9-88

 mdlSimStatusChange

mdlSimStatusChange
Respond to a pause or resumption of the simulation of the model that contains this C
MEX S-function

Required

No

Languages

C, C++

Syntax
#define MDL_SIM_STATUS_CHANGE

void mdlSimStatusChange(SimStruct *S,

 ssSimStatusChangeType simStatus)

Arguments

S

SimStruct representing an S-Function block.
simStatus

Status of the simulation, either SIM_PAUSE or SIM_CONTINUE.

Description

The Simulink engine calls this routine when a simulation of the model containing S
pauses or resumes. This method is only valid for simulation. C MEX S-functions must
enclose the method in a #if defined(MATLAB_MEX_FILE) statement.

9-89

9 S-Function Callback Methods — Alphabetical List

Example
#if defined(MATLAB_MEX_FILE)

#define MDL_SIM_STATUS_CHANGE

static void mdlSimStatusChange(SimStruct *S,

 ssSimStatusChangeType simStatus) {

 if (simStatus == SIM_PAUSE) {

 ssPrintf("Pause has been called! \n");

 } else if (simStatus == SIM_CONTINUE) {

 ssPrintf("Continue has been called! \n");

 }

}

#endif

See Also

SimStatusChange

Introduced before R2006a

9-90

 mdlStart

mdlStart
Initialize the state vectors of this C MEX S-function

Required

No

Languages

C, C++

Syntax
#define MDL_START

void mdlStart(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method at the beginning of a simulation. The
method performs initialization activities that this S-function requires only once, such as
setting up user data or initializing states.

This method is called at the start of every successive simulation in Fast Restart
mode, and it performs tasks that are required for every run. In contrast,
mdlSetupRuntimeResources performs tasks once in Fast Restart mode and the results
of those tasks done are reused by successive simulations.

9-91

9 S-Function Callback Methods — Alphabetical List

If your S-function resides in an enabled subsystem and needs to reinitialize its states
every whenever the subsystem is enabled, use mdlInitializeConditions to initialize
the state values, instead of mdlStart.

In C MEX S-functions, use ssGetContStates and/or ssGetDiscStates to get the
states.

Example

See sfun_directlook.c for an example of how to use this function.

See Also

mdlInitializeConditions, ssGetContStates, ssGetDiscStates, Start

Introduced before R2006a

9-92

 mdlSetupRuntimeResources

mdlSetupRuntimeResources
Perform any actions required once at the start of the simulation

Required

No

Languages

C, C++

Syntax
#define MDL_SETUP_RUNTIME_RESOURCES

void mdlSetupRuntimeResources(SimStruct *S)

Arguments
S

SimStruct representing an S-Function block.

Description

The Simulink engine invokes this optional method at the end of compilation. The method
performs setup activities that this S-function requires only once irrespective of the
number of simulations that follow (such as in a Fast Restart scenario).

See Also

mdlInitializeConditions, ssGetContStates, ssGetDiscStates, Start, “Fast
Restart Methodology”

9-93

9 S-Function Callback Methods — Alphabetical List

Introduced in R2016b

9-94

 mdlTerminate

mdlTerminate
Perform any actions required at termination of the simulation

Required

Yes

Languages

C, C++

Syntax
void mdlTerminate(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

This method performs any actions, such as freeing of memory, that must be performed
when the simulation is terminated or when an S-Function block is destroyed (e.g., when
it is deleted from a model). This method is called at the end of every simulation in Fast
Restart mode.

In C MEX S-functions, the mdlTerminate method is called after a simulation
(mdlStart is called).

In addition, if the SS_OPTION_CALL_TERMINATE_ON_EXIT option is set for
a given S-function, and if mdlInitializeSizes is called, then the user is

9-95

9 S-Function Callback Methods — Alphabetical List

guaranteed that Simulink will call mdlTerminate. One reason to set the
SS_OPTION_CALL_TERMINATE_ON_EXIT option is to allocate memory in
mdlInitializeSizes rather than wait until mdlStart.

Note that Simulink calls mdlInitializeSizes under a number of circumstances,
including compilation and simulation. Simulink will also call mdlInitializeSizes
during model editing if you perform an operation such as the setting of parameters.

In C MEX S-functions, use the UNUSED_ARG macro if the mdlTerminate function
does not perform any actions that require the SimStruct S to indicate that the S input
argument is required, but not used in the body of the callback. To do this, insert the line

UNUSED_ARG(S)

after any declarations in mdlTerminate.

Note If you have Simulink Coder, when generating code for a noninlined C MEX S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#if defined(MATLAB_MEX_FILE)

static void mdlTerminate(SimStruct *S)

{

 /* Add mdlTerminate code here *

}

#endif

The define statement makes the mdlTerminate method available only to a MATLAB
MEX file. If the S-function is not inlined, Simulink Coder cannot use this method,
resulting in link or run-time errors.

Example

Suppose your S-function allocates blocks of memory in mdlStart and saves pointers to
the blocks in a PWork vector. The following code fragment would free this memory.

{

 int i;

 for (i = 0; i<ssGetNumPWork(S); i++) {

 if (ssGetPWorkValue(S,i) != NULL) {

9-96

 mdlTerminate

 free(ssGetPWorkValue(S,i));

 }

 }

}

See Also

ssSetOptions, Terminate

Introduced before R2006a

9-97

9 S-Function Callback Methods — Alphabetical List

mdlCleanupRuntimeResources
Perform any actions required once at termination of the simulation

Required
Yes

Languages
C, C++

Syntax
void mdlCleanupRuntimeResources(SimStruct *S)

Arguments
S

SimStruct representing an S-Function block.

Description
This method performs any actions, such as freeing of memory, that must be performed
when the simulation is terminated or when an S-Function block is destroyed (e.g., when
it is deleted from a model).

In C MEX S-functions, the mdlCleanupRuntimeResources method is called after
a simulation (mdlSetupRuntimeResources is called), and it reverses the actions
performed by mdlSetupRuntimeResources.

Note If you have Simulink Coder, when generating code for a noninlined C MEX S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

9-98

 mdlCleanupRuntimeResources

#if defined(MATLAB_MEX_FILE)

static void mdlCleanupRuntimeResources(SimStruct *S)

{

 /* Add mdlCleanupRuntimeResources code here *

}

#endif

The define statement makes the mdlCleanupRuntimeResources method available
only to a MATLAB MEX file. If the S-function is not inlined, Simulink Coder cannot use
this method, resulting in link or run-time errors.

Example

Suppose your S-function allocates blocks of memory in mdlSetupRuntimeResources
and saves pointers to the blocks in a PWork vector. The following code fragment would
free this memory.

#define MDL_CLEANUP_RUNTIME_RESOURCES

static void mdlCleanupRuntimeResources(SimStruct *S)

{

 int i;

 for (i = 0; i<ssGetNumPWork(S); i++) {

 if (ssGetPWorkValue(S,i) != NULL) {

 free(ssGetPWorkValue(S,i));

 }

 }

}

See Also

mdlSetupRuntimeResources,ssSetOptions, Terminate, “Fast Restart Methodology”

Introduced in R2016b

9-99

9 S-Function Callback Methods — Alphabetical List

mdlUpdate

Update a block's states

Required

No

Languages

C, C++

Syntax

#define MDL_UPDATE

void mdlUpdate(SimStruct *S, int_T tid)

Arguments

S

SimStruct representing an S-Function block.
tid

Task ID.

Description

The Simulink engine invokes this optional method at each major simulation time step.
The method should compute the S-function's states at the current time step and store the
states in the S-function's state vector. The method can also perform any other tasks that
the S-function needs to perform at each major time step.

9-100

 mdlUpdate

Use this code if your S-function has one or more discrete states or does not have direct
feedthrough.

The reason for this is that most S-functions that do not have discrete states but do
have direct feedthrough do not have update functions. Therefore, the engine is able to
eliminate the need for the extra call in these circumstances.

If your C MEX S-function needs to have its mdlUpdate routine called and it does not
satisfy either of the above two conditions, specify that it has a discrete state, using the
ssSetNumDiscStates macro in the mdlInitializeSizes function.

In C MEX S-functions, the tid (task ID) argument specifies the task running when the
mdlOutputs routine is invoked. You can use this argument in the mdlUpdate routine of
a multirate S-Function block to encapsulate task-specific blocks of code (see “Multirate S-
Function Blocks” on page 8-40).

Use the UNUSED_ARG macro if your C MEX S-function does not contain task-specific
blocks of code to indicate that the tid input argument is required but not used in the
body of the callback. To do this, insert the line

UNUSED_ARG(tid)

after the declarations in mdlUpdate.

Note If you have Simulink Coder, when generating code for a noninlined C MEX S-
function that contains this method, make sure the method is not wrapped in a #if
defined(MATLAB_MEX_FILE) statement. For example:

#define MDL_UPDATE

#if defined(MDL_UPDATE) && defined(MATLAB_MEX_FILE)

static void mdlUpdate(SimStruct *S, int_T tid)

{

 /* Add mdlUpdate code here *

}

#endif

The define statement makes the mdlUpdate method available only to a MATLAB MEX
file. If the S-function is not inlined, Simulink Coder cannot use this method, resulting in
link or run-time errors.

9-101

9 S-Function Callback Methods — Alphabetical List

Example

For an example that uses this function to update discrete states, see dsfunc.c. For an
example that uses this function to update the transfer function coefficients of a time-
varying continuous transfer function, see stvctf.c.

See Also

mdlDerivatives, ssGetContStates, ssGetDiscStates, Update

Introduced before R2006a

9-102

 mdlZeroCrossings

mdlZeroCrossings
Update zero-crossing vector

Required

No

Languages

C, C++

Syntax
#define MDL_ZERO_CROSSINGS

void mdlZeroCrossings(SimStruct *S)

Arguments

S

SimStruct representing an S-Function block.

Description

An S-function needs to provide this optional method only if it does zero-crossing
detection. Implementing zero-crossing detection typically requires using the zero-
crossing and mode work vectors to determine when a zero crossing occurs and how the S-
function's outputs should respond to this event. The mdlZeroCrossings method should
update the S-function's zero-crossing vector, using ssGetNonsampledZCs.

You can use the optional mdlZeroCrossings routine when your S-function has
registered the CONTINUOUS_SAMPLE_TIME and has nonsampled zero crossings

9-103

9 S-Function Callback Methods — Alphabetical List

(ssGetNumNonsampledZCs(S) > 0). The mdlZeroCrossings routine is used to
provide the Simulink engine with signals that are to be tracked for zero crossings. These
are typically

• Continuous signals entering the S-function
• Internally generated signals that cross zero when a discontinuity would normally

occur in mdlOutputs

Thus, the zero-crossing signals are used to locate the discontinuities and end the current
time step at the point of the zero crossing. To provide the engine with zero-crossing
signals, mdlZeroCrossings updates the ssGetNonsampleZCs(S) vector.

Example

For an example, see sfun_zc_sat.c. A detailed description of this example can be
found in “Zero Crossings” on page 8-45.

See Also

mdlInitializeSizes, ssGetNonsampledZCs

Introduced before R2006a

9-104

 Outputs

Outputs
Compute the signals that this MATLAB S-function block emits

Required

Yes

Language

MATLAB

Syntax
Outputs(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine invokes this required method at each simulation time step.
In a Level-2 MATLAB S-function, the Outputs method calculates the S-function's
outputs at the current time step and store the results in the run-time object's
OutputPort(n).Data property. In addition, for S-functions with a variable sample
time, the Outputs method computes the next sample time hit.

Use the run-time object method IsSampleHit to determine if the current simulation
time is one at which a task handled by this block is active. For port-based sample times,
use the IsSampleHit property of the run-time object's InputPort or OutputPort

9-105

9 S-Function Callback Methods — Alphabetical List

methods to determine if the port produces outputs or accepts inputs at the current
simulation time step.

Set the run-time object's NextTimeHit property to specify the time of the next sample
hit for variable sample-time S-functions.

See Also

Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock, mdlOutputs

Introduced in R2012b

9-106

 PostPropagationSetup

PostPropagationSetup
Specify the sizes of the work vectors and create the run-time parameters required by this
MATLAB S-function

Required

No

Language

MATLAB

Syntax
PostPropagationSetup(s)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine calls this optional method to enable this S-function to set the
sizes of state and work vectors that it needs to store global data and to create run-time
parameters (see “Run-Time Parameters” on page 8-7). The engine invokes this method
after it has determined the input port width, output port width, and sample times of the
S-function. This allows the S-function to size the state and work vectors based on the
number and sizes of inputs and outputs and/or the number of sample times.

A Level-2 MATLAB S-function must implement this method if any DWork vectors are
used in the S-function. In the case of MATLAB S-functions, this method sets the number

9-107

9 S-Function Callback Methods — Alphabetical List

of DWork vectors and initializes their attributes. For example, the following code in the
PostPropagationSetup method specifies the usage for the first DWork vector:

s.DWork(1).Usage = type;

where s is an instance of the Simulink.MSFcnRunTimeBlock class representing the
Level-2 MATLAB S-Function block and type is one of the following:

• DWork
• DState
• Scratch
• Mode

Example

For a full example of a Level-2 MATLAB S-function using DWork vectors, see the file
adapt_lms.m used in the Simulink model sldemo_msfcn_lms.

See Also

setup, Simulink.RunTimeBlock, mdlSetWorkWidths

Introduced in R2012b

9-108

 ProcessParameters

ProcessParameters
Process the MATLAB S-function's parameters

Required

No

Language

MATLAB

Syntax
ProcessParameters(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

This is an optional routine that the Simulink engine calls after CheckParameters
changes and verifies parameters. The processing is done at the top of the simulation
loop when it is safe to process the changed parameters. This function is only valid for
simulation.

The purpose of this routine is to process newly changed parameters. An example is to
cache parameter changes in work vectors. The engine does not call this routine when it is
used with the Simulink Coder product. Therefore, if you use this routine in an S-function
designed for use with the Simulink Coder product, you must write your S-function so

9-109

9 S-Function Callback Methods — Alphabetical List

that it doesn't rely on this routine. To do this, you must inline your S-function by using
the Target Language Compiler. For information on inlining S-functions, see “Inlining S-
Functions” (Simulink Coder).

See Also

CheckParameters, Simulink.MSFcnRunTimeBlock, mdlProcessParameters

Introduced in R2012b

9-110

 Projection

Projection
Perturb the solver's solution of a system's states to better satisfy time-invariant solution
relationships

Required

No

Language

MATLAB

Syntax
Projection(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

This method is intended for use with S-functions that model dynamic systems whose
states satisfy time-invariant relationships, such as those resulting from mass or energy
conservation or other physical laws. The Simulink engine invokes this method at each
time step after the model's solver has computed the S-function's states for that time step.
Typically, slight errors in the numerical solution of the states cause the solutions to fail
to satisfy solution invariants exactly. Your Projection method can compensate for the
errors by perturbing the states so that they more closely approximate solution invariants
at the current time step. As a result, the numerical solution adheres more closely to the

9-111

9 S-Function Callback Methods — Alphabetical List

ideal solution as the simulation progresses, producing a more accurate overall simulation
of the system modeled by your S-function.

Your Projection method's perturbations of system states must fall within the solution
error tolerances specified by the model in which the S-function is embedded. Otherwise,
the perturbations may invalidate the solver's solution. It is up to your Projection
method to ensure that the perturbations meet the error tolerances specified by the
model. See “Perturb System States Using a Solution Invariant” on page 9-112 for a
simple method for perturbing a system's states. The following articles describe more
sophisticated perturbation methods that your mdlProjection method can use.

• C.W. Gear, “Maintaining Solution Invariants in the Numerical Solution of ODEs,”
Journal on Scientific and Statistical Computing, Vol. 7, No. 3, July 1986.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of ODEs I,”
Computers and Mathematics with Applications, Vol. 12B, 1986, pp. 1287–1296.

• L.F. Shampine, “Conservation Laws and the Numerical Solution of ODEs II,”
Computers and Mathematics with Applications, Vol. 38, 1999, pp. 61–72.

Example

Perturb System States Using a Solution Invariant

Here is a simple, Taylor-series-based approach to perturbing a system's states. Suppose
your S-function models a dynamic system having a solution invariant, g X t(,) , i.e., g is
a continuous, differentiable function of the system states, X , and time, t , whose value is
constant with time. Then

X X J J J R
n n n

T

n n

T

n
@ +

-*
()

1

where

• X
n is the system's ideal state vector at the solver's current time step

•
X

n

* is the approximate state vector computed by the solver at the current time step

• J
n is the Jacobian of the invariant function evaluated at the point in state space

specified by the approximate state vector at the current time step:

9-112

 Projection

J
g

X
X tn n n=

∂

∂
(,)*

• t
n

 is the time at the current time step

• R
n is the residual (difference) between the invariant function evaluated at X

n and

X
n

* at the current time step:

R g X t g X tn n n n n= -(,) (,)*

Note: The value of g X tn n(,) is the same at each time step and is known by definition.

Given a continuous, differentiable invariant function for the system that your S-function
models, this formula allows your S-function's mdlProjection method to compute a
perturbation

J J J R
n

T

n n

T

n
()

-1

of the solver's numerical solution, X
n

* , that more closely matches the ideal solution, X
n ,

keeping the S-function's solution from drifting from the ideal solution as the simulation
progresses.

MATLAB Example

This example illustrates how the perturbation method outlined in the previous section
can keep a model's numerical solution from drifting from the ideal solution as a
simulation progresses. Consider the following model,mdlProjectionEx1:

9-113

9 S-Function Callback Methods — Alphabetical List

The PredPrey block references an S-function, predprey_noproj.m, that uses the Lotka-
Volterra equations

&

&

x ax y

y cy x

= -

= - -

()

()

1

1

to model predator-prey population dynamics, where x t() is the population density of the
predators and y t() is the population density of prey. The ideal solution to the predator-
prey ODEs satisfies the time-invariant function

x e y e dc cx a ay- -

=

where a , c , and d are constants. The S-function assumes a = 1, c = 2, and d =
121.85.

The Invariant Residual block in this model computes the residual between the invariant
function evaluated along the system's ideal trajectory through state space and its
simulated trajectory:

R d x e y en n
c cx

n
a ayn n

= -
- -

where x
n

and y
n

are the values computed by the model's solver for the predator and prey
population densities, respectively, at the current time step. Ideally, the residual should
be zero throughout simulation of the model, but simulating the model reveals that the
residual actually strays considerably from zero:

9-114

 Projection

Now consider the following model, mdlProjectionEx2:

This model is the same as the previous model, except that its S-function, predprey.m,
includes a mdlProjection method that uses the perturbation approach outlined in
“Perturb System States Using a Solution Invariant” on page 9-112 to compensate for
numerical drift. As a result, the numerical solution more closely tracks the ideal solution

9-115

9 S-Function Callback Methods — Alphabetical List

as the simulation progresses as demonstrated by the residual signal, which remains near
or at zero throughout the simulation:

See Also

Simulink.MSFcnRunTimeBlock, mdlProjection,

Introduced in R2012b

9-116

 SetAllowConstantSampleTime

SetAllowConstantSampleTime
Specify sample time behavior and tunability for S-function blocks with port-based sample
times

Language
MATLAB

Syntax
SetAllowConstantSampleTime(s,flag)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

flag

Logical value to allow a sample time of Inf for ports in the S-function. The default is
False.

Description
Use this macro to specify sample time behavior for your S-function with port-based
sample times. If you set flag to False, the Simulink engine does not allow a sample
time of Inf for this S-function. If you set flag to True, the S-function block is tunable
and its ports can have a sample time of Inf. To set the sample time for ports in the S-
function, use SetInputPortSampleTime and SetOutputPortSampleTime. These
ports execute every time you tune any parameter in your model during simulation.

See Also
SetOutputPortSampleTime, SetInputPortSampleTime

9-117

9 S-Function Callback Methods — Alphabetical List

SetInputPortComplexSignal
Set the numeric types (real, complex, or inherited) of the signals accepted by an input
port

Required

No

Language

MATLAB

Syntax
SetInputPortComplexSignal(s, port, csig)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying index of port to be set.
csig

Integer value specifying whether the port accepts real (false or 0) or complex (true
or 1) signals.

Description

The Simulink engine calls this routine to set the input port numeric type for inputs that
have this attribute set to COMPLEX_INHERITED. The input csig is the proposed numeric
type for this input port. This method is only valid for simulation.

9-118

 SetInputPortComplexSignal

The S-function must check whether the proposed numeric type is a valid type for the
specified port. If it is valid, level-2 MATLAB S-functions set the numeric type of the
specified input port using the line:

s.InputPort(port).Complexity = csig;

The S-function can also set the numeric types of other input and output ports with
inherited numeric types. The engine reports an error if the S-function changes the
numeric type of a port whose numeric type is known.

If the S-function does not implement this routine, the engine assumes that the S-function
accepts a real or complex signal and sets the input port numeric type to the specified
value.

The engine calls this method until all input ports with inherited numeric types have
their numeric types specified.

See Also

Simulink.MSFcnRunTimeBlock, Simulink.BlockPortData,
mdlSetInputPortComplexSignal

Introduced in R2012b

9-119

9 S-Function Callback Methods — Alphabetical List

SetInputPortDataType
Set the data types of the signals accepted by an input port

Required

No

Language

MATLAB

Syntax
SetInputPortDataType(s, port, id)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying index of port to be set.
id

Integer value specifying ID of port's data type. Use s.getDatatypeName(id) to get
the data type's name.

Description

The Simulink engine calls this routine to set the data type of port when port has an
inherited data type. The data type id is the proposed data type for this port. Data type

9-120

 SetInputPortDataType

IDs for the built-in data types can be found in simstruc_types.h. This method is only
valid for simulation.

The S-function must check whether the specified data type is a valid data type for the
specified port. If it is a valid data type, Level-2 MATLAB S-functions set the data type of
the input port using the line:

s.InputPort(port).DatatypeID = id;

The S-function can also set the data types of other input and output ports if they are
unknown. The engine reports an error if the S-function changes the data type of a port
whose data type has been set.

If the block does not implement this routine, the engine assumes that the block accepts
any data type and sets the input port data type to the specified value.

The engine calls this method until all input ports with inherited data types have their
data types specified.

See Also

Simulink.MSFcnRunTimeBlock, Simulink.BlockPortData,
mdlSetInputPortDataType

Introduced in R2012b

9-121

9 S-Function Callback Methods — Alphabetical List

SetInputPortDimensions
Set the dimensions of the signals accepted by an input port

Required

No

Languages

MATLAB

Syntax
SetInputPortDimensions(s, port, dimsInfo)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying index of port to be set.
dimsInfo

Array that specifies the signal dimensions supported by the port, e.g., [5] for a 5-
element vector signal or [3 3] for a 3-by-3 matrix signal.

Description

The Simulink engine calls this method during dimension propagation with candidate
dimensions dimsInfo for port.

9-122

 SetInputPortDimensions

A Level-2 MATLAB S-function sets the input port dimensions using the line

s.InputPort(port).Dimensions = dimsInfo;

This method is only valid for simulation.

Note This method can set the dimensions of any other input or output port whose
dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully determine the dimensionality
of port from the port to which it is connected.

The engine calls this method until all input ports with inherited dimensions have their
dimensions specified.

See Also

SetOutputPortDimensions, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData, mdlSetInputPortDimensionInfo

Introduced in R2012b

9-123

9 S-Function Callback Methods — Alphabetical List

SetInputPortDimensionsMode

Propagate the dimensions mode

Required

No

Language

MATLAB

Syntax

SetInputPortDimensionsMode(s, port, dm)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying index of port to be set.
dm

Integer value representing the dimensions mode of the port.

Description

The Simulink engine calls this optional method to enable this S-function to set the
dimensions mode of the input port indexed by portIdx.

9-124

 SetInputPortDimensionsMode

See Also

SetInputPortDimensions, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData, mdlSetInputPortDimensionsModeFcn

Introduced in R2012b

9-125

9 S-Function Callback Methods — Alphabetical List

SetInputPortSampleTime
Set the sample time of an input port that inherits its sample time from the port to which
it is connected

Required

No

Language

MATLAB

Syntax
SetInputPortSampleTime(s, port, time)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying the index of port whose sampling mode is to be set.
time

Two-element array, [period offset], that specifies the period and offset of the
times that this port samples its input.

Description

The Simulink engine invokes this method with the sample time that port inherits from
the port to which it is connected.

9-126

 SetInputPortSampleTime

For Level-2 MATLAB S-functions, if the inherited sample time is acceptable, this method
sets the sample time and offset time using the line

s.InputPort(port).SampleTime = time;

The engine calls this method until all input ports with inherited sample times are
specified.

When inherited port-based sample times are specified, the sample time is guaranteed to
be one of the following where 0.0 < period < inf and 0.0 <= offset < period.

 Sample Time Offset Time

Continuous 0.0 0.0

Discrete period offset

Constant, triggered, and variable-step sample times are not propagated to S-functions
with port-based sample times.

Generally SetInputPortSampleTime is called once per port with the input port
sample time. However, there can be cases where this function is called more than once.
This happens when the simulation engine is converting continuous sample times to
continuous but fixed in minor steps sample times. When this occurs, the original values
of the sample times specified in setup are restored before this method is called again.

The final sample time specified at the port can be different from (but equivalent to) the
sample time specified by this method. This occurs when

• The model uses a fixed-step solver and the port has a continuous but fixed in minor
step sample time. In this case, the Simulink engine converts the sample time to the
fundamental sample time for the model.

• The engine adjusts the sample time to be as numerically sound as possible. For
example, the engine converts [0.2499999999999, 0] to [0.25, 0].

The S-function can examine the final sample times in setup.

See Also

setup, Simulink.MSFcnRunTimeBlock , mdlSetInputPortSampleTime

9-127

9 S-Function Callback Methods — Alphabetical List

Introduced in R2012b

9-128

 SetOutputPortComplexSignal

SetOutputPortComplexSignal
Set the numeric types (real, complex, or inherited) of the signals accepted by an output
port

Required

No

Language

MATLAB

Syntax
SetOutputPortComplexSignal(s, port, csig)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying the index of port to be set.

csig

Integer value specifying whether the port produces real (0) or complex (1) signals.

Description

The Simulink engine calls this routine to set the output port numeric type for outputs
that have this attribute set to COMPLEX_INHERITED. The input argument csig is the

9-129

9 S-Function Callback Methods — Alphabetical List

proposed numeric type for this output port. The S-function must check whether the
specified numeric type is a valid type for the specified port.

If it is valid, Level-2 MATLAB S-functions set the numeric type of the specified output
port using the line

s.OutputPort(port).Complexity = csig;

The S-function can also set the numeric types of other input and output ports with
unknown numeric types. The engine reports an error if the S-function changes the
numeric type of a port whose numeric type is known.

If the S-function does not implement this routine, the engine assumes that the S-function
accepts a real or complex signal and sets the output port numeric type to the specified
value.

The engine calls this method until all output ports with inherited numeric types have
their numeric types specified.

Example

See sdotproduct.c for an example of how to use this function.

See Also

Simulink.MSFcnRunTimeBlock , Simulink.BlockPortData,
mdlSetOutputPortComplexSignal

Introduced in R2012b

9-130

 SetOutputPortDataType

SetOutputPortDataType
Set the data type of the signals emitted by an output port

Required

No

Language

MATLAB

Syntax
SetOutputPortDataType(s, port, id)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying index of port to be set.
id

Integer value specifying ID of port's data type. Use s.getDatatypeName(id) to get
the data type's name.

Description

The Simulink engine calls this routine to set the data type of port when port has an
inherited data type. The data type ID id is the proposed data type for this port. Data

9-131

9 S-Function Callback Methods — Alphabetical List

type IDs for the built-in data types can be found in simstruc_types.h. The S-function
must check whether the specified data type is a valid data type for the specified port.

If it is a valid data type, Level-2 MATLAB S-functions set the data type of the output
port using the line

s.OutputPort(port).DatatypeID = id;

The S-function can also set the data types of other input and output ports if their data
types have not been set. The engine reports an error if the S-function changes the data
type of a port whose data type has been set.

If the block does not implement this method, the engine assumes that the block supports
any data type and sets the output port data type to the specified value.

The engine calls this method until all output ports with inherited data types have their
data types specified.

See Also

Simulink.MSFcnRunTimeBlock , Simulink.BlockPortData,
mdlSetOutputPortDataType

Introduced in R2012b

9-132

 SetOutputPortDimensions

SetOutputPortDimensions
Set the dimensions of the signals accepted by an output port

Required

No

Language

MATLAB

Syntax
SetOutputPortDimensions(s, port, dimsInfo)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

port

Integer value specifying the index of the port to be set.
dimsInfo

Array that specifies the signal dimensions supported by the port, e.g., [5] for a 5-
element vector signal or [3 3] for a 3-by-3 matrix signal.

Description

The Simulink engine calls this method with candidate dimensions dimsInfo for port.

A Level-2 MATLAB S-function sets the output port dimensions using the line

9-133

9 S-Function Callback Methods — Alphabetical List

s.OutputPort(port).Dimensions = dimsInfo;

Note This method can set the dimensions of any other input or output port whose
dimensions derive from the dimensions of port.

By default, the engine calls this method only if it can fully determine the dimensionality
of port from the port to which it is connected.

The engine calls this method until all output ports with inherited dimensions have their
dimensions specified.

Example

See sfun_matadd.c for an example of how to use this function.

See Also

SetInputPortDimensions, Simulink.MSFcnRunTimeBlock ,
Simulink.BlockPortData, mdlSetOutputPortDimensionInfo

Introduced in R2012b

9-134

 SetOutputPortSampleTime

SetOutputPortSampleTime
Set the sample time of an output port that inherits its sample time from the port to
which it is connected

Required

No

Language

MATLAB

Syntax
SetOutputPortSampleTime(s, port, time)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the S-Function
block.

port

Integer value specifying the index of port whose sampling mode is to be set.
time

Two-element array, [period offset], that specifies the period and offset of the
times that this port produces output.

Description

The Simulink engine calls this method with the sample time that port inherits from the
port to which it is connected.

9-135

9 S-Function Callback Methods — Alphabetical List

For Level-2 MATLAB S-functions, if the inherited sample time is acceptable, this method
sets the sample time and offset time using the line

s.OutputPort(port).SampleTime = time;

This method can set the sample time of any other input or output port whose sample
time derives from the sample time of port, setting the SampleTime property of the
Simulink.BlockPortData object associated with the port in Level-2 MATLAB S-
functions.

Normally, sample times are propagated forward; however, if sources feeding this block
have inherited sample times, the engine might choose to back-propagate known sample
times to this block. When back-propagating sample times, this method is called in
succession for all inherited output port signals.

See SetInputPortSampleTime for more information about when this method is called.

See Also

SetInputPortSampleTime, Simulink.MSFcnRunTimeBlock,
Simulink.BlockPortData, mdlSetOutputPortSampleTime

Introduced in R2012b

9-136

 SetSimState

SetSimState
Set the simulation state of the MATLAB S-function by restoring the SimState.

Required
No

Language
MATLAB

Syntax
SetSimState(s, in)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

in

The MATLAB data of type returned by GetSimState.

Description
The Simulink engine invokes this custom method at the beginning of a simulation of the
model containing S . Simulink sets the initial simulation state of the S-function to the
SimState of the model.

See Also
InitializeConditions, GetSimState, mdlSetSimState

9-137

9 S-Function Callback Methods — Alphabetical List

Introduced in R2012b

9-138

 setup

setup
Specify the number of inputs, outputs, states, parameters, and other characteristics of
the MATLAB S-function

Required

Yes

Language

MATLAB

Syntax
setup(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

This is the first S-function callback methods that the Simulink engine calls.

The Level-2 MATLAB S-function setup method performs nearly the same tasks as the
C MEX S-function mdlInitializeSizes method, with two significant differences. The
setup method does not initialize discrete state information, but it does specify the block
sample times, eliminating the need for an mdlInitializeSampleTimes method. Use
the following properties and methods of the run-time object s to configure the S-function:

9-139

9 S-Function Callback Methods — Alphabetical List

• Specify the number of parameters that this S-function supports, using
s.NumDialogPrms.

Use s.DialogPrmsTunable to set the tunability of each dialog parameter. When
a parameter has been specified as not tunable, the Simulink engine issues an error
during simulation (or when in external mode when using the Simulink Coder product)
if an attempt is made to change the parameter.

• Specify the number of continuous states that this function has,
using s.NumContStates. Specify discrete state information in the
PostPropagationSetup method using a DWork vector.

• Configure the block's input ports, including:

• Specify the number of input ports that this S-function has, using
s.NumInputPorts.

• Specify the dimensions of the ith input port, using
s.InputPort(i).Dimensions.

• If using port-based sample times, specify the sample time of the ith input port,
using s.InputPort(i).SampleTime.

• For each input port, specify whether it has direct feedthrough, using
s.InputPort(i).DirectFeedthrough.

A port has direct feedthrough if the input is used in the Outputs method to
calculate the output or the next sample time, for an S-function with a variable
sample time. The direct feedthrough flag for each input port can be set to either
1=yes or 0=no. It should be set to 1 if the input, u, is used in the Outputs
method. Setting the direct feedthrough flag to 0 tells the engine that u is not used
in this S-function method. Violating this leads to unpredictable results.

See Simulink.BlockData and its parent and children classes for a list of all the
properties and methods associated with a Level-2 MATLAB S-function input port.

• Configure the block's output ports, including:

• Specify the number of output ports that the block has, using s.NumOutputPorts.
• Specify the dimensions of the ith output port, using

s.OutputPort(i).Dimensions.
• If using port-based sample times, specify the sample time of the ith output port,

using s.OutputPort(i).SampleTime.
• Set the block-based sample times (i.e., sample rates), using s.SampleTimes.

9-140

 setup

See “Sample Times” on page 8-29 for a complete discussion of sample time issues.

For multirate S-functions, the suggested approach to setting sample times is via the
port-based sample times method. When you create a multirate S-function, you must
take care to verify that, when slower tasks are preempted, your S-function correctly
manages data so as to avoid race conditions. When port-based sample times are
specified, the block cannot inherit a sample time of Inf at any port.

See “Using the setup Method” on page 3-6 for additional information and examples
using the setup method.

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates, NumInputs,
NumOutputs, NumRWork, NumIWork, NumPWork, NumModes, and NumNonsampledZCs to
a fixed nonnegative integer or tell the Simulink engine to size them dynamically:

• DYNAMICALLY_SIZED -- Sets lengths of states, work vectors, and so on to values
inherited from the driving block. It sets widths to the actual input widths, according
to the scalar expansion rules unless you use mdlSetWorkWidths to set the widths.

• 0 or positive number -- Sets lengths (or widths) to the specified values. The default is
0.

See Also

Simulink.BlockData, Simulink.MSFcnRunTimeBlock, mdlInitializeSizes,
mdlInitializeSampleTimes

Introduced in R2012b

9-141

9 S-Function Callback Methods — Alphabetical List

SimStatusChange
Respond to a pause or resumption of the simulation of the model that contains this
MATLAB S-function

Required
No

Languages
MATLAB

Syntax
SimStatusChange(s, status)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

status

Status of the simulation, either 0 when paused or 1 when continued.

Description
The Simulink engine calls this routine when a simulation of the model containing S
pauses or resumes. This method is only valid for simulation.

See Also
Simulink.MSFcnRunTimeBlock, mdlSimStatusChange

9-142

 SimStatusChange

Introduced in R2012b

9-143

9 S-Function Callback Methods — Alphabetical List

Start
Initialize the state vectors of this MATLAB S-function

Required

No

Language

MATLAB

Syntax
Start(s)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

The Simulink engine invokes this optional method at the beginning of a simulation. The
method performs initialization activities that this S-function requires only once, such as
allocating memory and setting up user data. Use InitializeConditions to initialize
state values

If your S-function resides in an enabled subsystem and needs to reinitialize its states
whenever the subsystem is enabled, use InitializeConditions to initialize the state
values, instead of Start.

Use the properties of Simulink.RunTimeBlock to get the states.

9-144

 Start

Example

See msfcn_varpulse.m for an example of how to use this function.

See Also

InitializeConditions, Simulink.RunTimeBlock, mdlStart

Introduced in R2012b

9-145

9 S-Function Callback Methods — Alphabetical List

Terminate
Perform any actions required at termination of the simulation

Required

Yes

Language

MATLAB

Syntax
Terminate(s)

Arguments

s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description

This method performs any actions, such as freeing of memory, that must be performed
when the simulation is terminated or when an S-Function block is destroyed (e.g., when
it is deleted from a model).

See Also

mdlTerminate

9-146

 Terminate

Introduced in R2012b

9-147

9 S-Function Callback Methods — Alphabetical List

Update
Update a block's states

Required
No

Language
MATLAB

Syntax
Update(s)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description
The Simulink engine invokes this optional method at each major simulation time step.
The method should compute the S-function's states at the current time step and store the
states in the S-function's state vector. The method can also perform any other tasks that
the S-function needs to perform at each major time step.

Use this code if your S-function has one or more discrete states or does not have direct
feedthrough.

The reason for this is that most S-functions that do not have discrete states but do
have direct feedthrough do not have update functions. Therefore, the engine is able to
eliminate the need for the extra call in these circumstances.

9-148

 Update

In Level-2 MATLAB S-functions, use the run-time object method IsSampleHit to
determine if the current simulation time is one at which a task handled by this block
is active. For port-based sample times, use the IsSampleHit property of the run-time
object's InputPort or OutputPort to determine if the port produces outputs or accepts
inputs at the current simulation time step.

Example

For an example that uses this function to update discrete states, see
msfcn_unit_delay.m.

See Also

Derivatives, Simulink.RunTimeBlock, Simulink.MSFcnRunTimeBlock,
mdlUpdate

Introduced in R2012b

9-149

9 S-Function Callback Methods — Alphabetical List

WriteRTW
Generate code generation data for the MATLAB S-function

Required
No

Language
MATLAB

Syntax
WriteRTW(s)

Arguments
s

Instance of Simulink.MSFcnRunTimeBlock class representing the Level-2
MATLAB S-Function block.

Description
This function is called when the Simulink Coder product is generating the model.rtw
file.

In Level-2 MATLAB S-functions, use the run-time object's WriteRTWParam method to
write custom parameters to the model.rtw file.

Example
See the S-function adapt_lms.m in the Simulink model sldemo_msfcn_lms for an
example.

9-150

 WriteRTW

See Also

Simulink.MSFcnRunTimeBlock, mdlRTW

Introduced in R2012b

9-151

10

S-Function SimStruct Functions
Reference

• “S-Function SimStruct Functions” on page 10-2
• “SimStruct Macros and Functions Listed by Usage” on page 10-3

10 S-Function SimStruct Functions Reference

S-Function SimStruct Functions

In this section...

“About SimStruct Functions” on page 10-2
“Language Support” on page 10-2
“The SimStruct” on page 10-2

About SimStruct Functions

The Simulink software provides a set of functions for accessing the fields of an S-
function's simulation data structure (SimStruct). S-function callback methods use these
functions to store and retrieve information about an S-function.

Language Support

Some SimStruct functions are available only in some of the languages supported by the
Simulink software. The reference page for each SimStruct macro or function lists the
languages in which it is available and gives the syntax for these languages.

Note Most SimStruct functions available in C are implemented as C macros. Individual
reference pages indicate any SimStruct macro that becomes a function when you
compile your S-function in debug mode (mex -g).

The SimStruct

The file simstruc.h is a C language header file that defines the Simulink data
structure and the SimStruct access macros. It encapsulates all the data relating to the
model or S-function, including block parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each S-
function in the model has its own SimStruct associated with it. The organization of
these SimStructs is much like a directory tree. The SimStruct associated with the
model is the root SimStruct. The SimStructs associated with the S-functions are the
child SimStructs.

10-2

 SimStruct Macros and Functions Listed by Usage

SimStruct Macros and Functions Listed by Usage

In this section...

“Buses” on page 10-3
“Data Type” on page 10-4
“Dialog Box Parameters” on page 10-5
“Error Handling and Status” on page 10-5
“Function Call” on page 10-6
“Input and Output Ports” on page 10-6
“Model Reference” on page 10-12
“Run-Time Parameters” on page 10-13
“Sample Time” on page 10-14
“Simulation Information” on page 10-15
“State and Work Vector” on page 10-18
“Code Generation” on page 10-20
“Miscellaneous” on page 10-22

Buses

Macro Description

ssGetBusElementComplexSignal Get the signal complexity for a bus
element.

ssGetBusElementDataType Get the data type identifier for a bus
element.

ssGetBusElementDimensions Get the dimensions of a bus element.
ssGetBusElementName Get the name of a bus element.
ssGetBusElementNumDimensions Get the number of dimensions for a bus

element.
ssGetBusElementOffset Get the offset from the start of the bus data

type to a bus element.
ssGetNumBusElements Get the number of elements in a bus signal.

10-3

10 S-Function SimStruct Functions Reference

Macro Description

ssGetSFcnParamName Get the value of a block parameter for an S-
function block.

ssIsDataTypeABus Determine whether a data type identifier
represents a bus signal.

ssRegisterTypeFromParameter Register a data type that a parameter in
the Simulink data type table specifies.

ssSetBusInputAsStruct Specify whether to convert the input bus
signal for an S-function from virtual to
nonvirtual.

ssSetBusOutputAsStruct Specify whether the output bus signal
from an S-function must be virtual or
nonvirtual.

ssSetBusOutputObjectName Specify the name of the bus object that
defines the structure and type of the output
bus signal.

Data Type

Macro Description

ssGetDataTypeId Get the ID for a data type.
ssGetDataTypeIdAliasedThruTo Get the ID for the built-in data type

associated with a data type alias.
ssGetDataTypeName Get a data type's name.
ssGetDataTypeSize Get a data type's size.
ssGetDataTypeZero Get the zero representation of a data type.
ssGetInputPortDataType Get the data type of an input port.
ssGetNumDataTypes Get the number of data types defined by an

S-function or the model.
ssGetOutputPortDataType Get the data type of an output port.
ssGetOutputPortSignal Get an output signal of any type except

double.
ssGetSFcnParamDataType Get the data type of a parameter.

10-4

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssRegisterDataType Register a data type.
ssSetDataTypeSize Specify the size of a data type.
ssSetDataTypeZero Specify the zero representation of a data

type.
ssSetInputPortDataType Specify the data type of signals accepted by

an input port.
ssSetOutputPortDataType Specify the data type of an output port.

Dialog Box Parameters

Macro Description

ssGetDTypeIdFromMxArray Get the Simulink data type of a dialog
parameter.

ssGetNumSFcnParams Get the number of parameters that an S-
function expects.

ssGetSFcnParam Get a parameter entered by a user in the S-
Function block dialog box.

ssGetSFcnParamsCount Get the actual number of parameters
specified by the user.

ssSetNumSFcnParams Set the number of parameters that an S-
function expects.

ssSetSFcnParamTunable Specify the tunability of a dialog box
parameter.

Error Handling and Status

Macro Description

ssGetErrorStatus Get a character vector that identifies the
last error.

ssPrintf Print a variable-content msg.
ssSetErrorStatus Report errors.
ssWarning Display a warning message.

10-5

10 S-Function SimStruct Functions Reference

Function Call

Macro Description

ssCallSystemWithTid Execute a function-call subsystem
connected to an S-function.

ssDisableSystemWithTid Disable a function-call subsystem
connected to this S-function block.

ssEnableSystemWithTid Enable a function-call subsystem connected
to this S-function.

ssGetCallSystemNumFcnCall-

Destinations

Get the number of function-call
destinations.

ssGetExplicitFCSSCtrl Determine whether this S-function
explicitly enables and disables the function-
call subsystem that it invokes.

ssSetCallSystemOutput Specify that an output port element issues
a function call.

ssSetExplicitFCSSCtrl Specify whether an S-function explicitly
enables and disables the function-call
subsystem that it calls.

Input and Output Ports

I/O Port — Signal Specification

Macro Description

ssAllowSignalsWithMoreThan2D Enable S-function to work with
multidimensional input and output
signals.

ssGetInputPortComplexSignal Get the numeric type (complex or real)
of an input port.

ssGetInputPortDataType Get the data type of an input port.
ssGetInputPortDirectFeedThrough Determine whether an input port has

direct feedthrough.
ssGetInputPortFrameData Determine whether a port accepts

signal frames.

10-6

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssGetInputPortOffsetTime Determine the offset time of an input
port.

ssGetInputPortRequiredContiguous Determine whether the signal
elements entering a port must be
contiguous.

ssGetInputPortSampleTime Determine the sample time of an input
port.

ssGetInputPortSampleTimeIndex Get the sample time index of an input
port.

ssGetInputPortUnit Get unit of input port
ssGetOutputPortComplexSignal Get the numeric type (complex or real)

of an output port.
ssGetOutputPortDataType Get the data type of an output port.
ssGetOutputPortFrameData Determine whether a port outputs

signal frames.
ssGetOutputPortOffsetTime Determine the offset time of an output

port.
ssGetOutputPortSampleTime Determine the sample time of an

output port.
ssGetOutputPortUnit Get unit of output port
ssRegisterUnitFromExpr Register unit from unit expression
ssSetInputPortComplexSignal Set the numeric type (real or complex)

of an input port.
ssSetInputPortDataType Set the data type of an input port.
ssSetInputPortDirectFeedThrough Specify that an input port is a direct-

feedthrough port.
ssSetInputPortOffsetTime Specify the sample time offset for an

input port.
ssSetInputPortRequiredContiguous Specify that the signal elements

entering a port must be contiguous.
ssSetInputPortSampleTime Set the sample time of an input port.

10-7

10 S-Function SimStruct Functions Reference

Macro Description

ssSetInputPortUnit Specify unit of input port
ssSetNumInputPorts Set the number of input ports on an S-

Function block.
ssSetNumOutputPorts Specify the number of output ports on

an S-Function block.
ssSetOneBasedIndexInputPort Specify that an input port expects one-

based indices.
ssSetOneBasedIndexOutputPort Specify that an output port emits one-

based indices.
ssSetOutputPortComplexSignal Specify the numeric type (real or

complex) of this port.
ssSetOutputPortDataType Specify the data type of an output port.
ssSetOutputPortOffsetTime Specify the sample time offset value of

an output port.
ssSetOutputPortSampleTime Specify the sample time of an output

port.
ssSetOutputPortUnit Specify unit of output port
ssSetZeroBasedIndexInputPort Specify that an input port expects zero-

based indices.
ssSetZeroBasedIndexOutputPort Specify that an output port emits zero-

based indices.

I/O Port — Signal Dimensions

Macro Description

Register a method to handle current
dimensions update.
Register a method to check the current
input dimensions.

ssAllowSignalsWithMoreThan2D Enable S-function to work with
multidimensional signals.
Gets the current size of dimension
dIdx of input port pIdx.

10-8

 SimStruct Macros and Functions Listed by Usage

Macro Description

Gets the total width (total number of
elements) of the signal at input port
pIdx
Gets the current size of dimension
dIdx of the signal at output port pIdx.
Gets the total width (total number of
elements) of the signal at output port
pIdx.

ssGetInputPortDimensions Get the dimensions of the signal
accepted by an input port.

ssGetInputPortDimensionSize Get the size of one dimension of the
signal entering an input port.
Gets the dimensions mode of the input
port indexed by pIdx,

ssGetInputPortNumDimensions Get the dimensionality of the signals
accepted by an input port.

ssGetInputPortWidth Determine the width of an input port.
ssGetOutputPortDimensions Get the dimensions of the signal

leaving an output port.
ssGetOutputPortDimensionSize Get the size of one dimension of the

signal leaving an output port.
Sets the dimensions mode of the
output port indexed by pIdx.

ssGetOutputPortNumDimensions Get the number of dimensions of an
output port.

ssGetOutputPortWidth Determine the width of an output port.
Sets the current size corresponding to
dimension dIdx of the output signal at
port pIdx.
Set the block flag for resetting the
dIndex DWork size upon subsystem
reset.

10-9

10 S-Function SimStruct Functions Reference

Macro Description

ssSetInputPortDimensionInfo Set the dimensionality of an input
port.

ssSetInputPortDimensionsMode Sets the dimensions mode of the input
port indexed by pIdx.
Set the dimensions of output port
outIdx to be equal than the dimensions
of input port inpIdx.

ssSetInputPortMatrixDimensions Specify dimension information for an
input port that accepts matrix signals.

ssSetInputPortVectorDimension Specify dimension information for an
input port that accepts vector signals.

ssSetInputPortWidth Set the width of a 1-D (vector) input
port.

ssSetOutputPortDimensionInfo Specify the dimensionality of an output
port.

ssSetOutputPortDimensionsMode Sets the dimensions mode of the
output port indexed by pIdx.

ssSetOutputPortMatrixDimensions Specify dimension information for an
output port that emits matrix signals.

ssSetOutputPortVectorDimension Specify dimension information for an
output port that emits vector signals.

ssSetOutputPortWidth Specify the width of a 1-D (vector)
output port.

ssSetOutputPortMatrixDimensions Specify the dimensions of a 2-D
(matrix) signal.
Register the method to handle
dimensions mode propagation for each
input port.
Set the type of output dependency on
the input signal.

ssSetVectorMode Specify the vector mode that an S-
function supports.

10-10

 SimStruct Macros and Functions Listed by Usage

I/O Port — Signal Access

Macro Description

ssGetInputPortBufferDstPort Determine the output port that is
overwriting an input port's memory
buffer.

ssGetInputPortConnected Determine whether an S-Function
block port is connected to a nonvirtual
block.

ssGetInputPortOptimOpts Determine the reusability setting of
the memory allocated to the input port
of an S-function.

ssGetInputPortOverWritable Determine whether an input port can
be overwritten.

ssGetInputPortRealSignal Get the address of a real, contiguous
signal entering an input port.

ssGetInputPortRealSignalPtrs Access the signal elements connected
to an input port.

ssGetInputPortSignal Get the address of a contiguous signal
entering an input port.

ssGetInputPortSignalPtrs Get pointers to input signal elements
of type other than double.

ssGetNumInputPorts Can be used in any routine (except
mdlInitializeSizes) to determine
how many input ports a block has.

ssGetNumOutputPorts Can be used in any routine (except
mdlInitializeSizes) to determine
how many output ports a block has.

ssGetOutputPortConnected Determine whether an output port is
connected to a nonvirtual block.

ssGetOutputPortBeingMerged Determine whether the output of this
block is connected to a Merge block.

ssGetOutputPortOptimOpts Determine the reusability of the
memory allocated to the output port of
an S-function.

10-11

10 S-Function SimStruct Functions Reference

Macro Description

ssGetOutputPortRealSignal Access the elements of a signal
connected to an output port.

ssGetOutputPortSignal Get the vector of signal elements
emitted by an output port.

ssSetInputPortOptimOpts Specify the reusability of the memory
allocated to the input port of an S-
function.

ssSetInputPortOverWritable Specify whether an input port is
overwritable by an output port.

ssSetOutputPortOptimOpts Specify the reusability of the memory
allocated to the output port of an S-
function.

ssSetOutputPortOverwritesInputPort Specify whether an output port can
share its memory buffer with an input
port.

Model Reference

Macro Description

ssRTWGenIsModelReferenceRTW-

Target

Determine if the model reference Simulink
Coder target is generating.

ssRTWGenIsModelReferenceSIM-

Target

Determine if the model reference
simulation target is generating.

ssSetModelReferenceNormalMode-

Support

Specify if S-function can be used in
referenced model simulating in normal
mode.

ssSetModelReferenceSampleTime-

DefaultInheritance

Specify that a referenced model containing
this S-function can inherit its sample time
from its parent model.

ssSetModelReferenceSampleTime-

DisallowInheritance

Specify that the use of this S-function in a
referenced model prevents the referenced
model from inheriting its sample time from
its parent model.

10-12

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetModelReferenceSampleTime-

InheritanceRule

Specify whether use of an S-function in a
referenced model prevents the referenced
model from inheriting its sample time from
the parent model.

Run-Time Parameters

These macros allow you to create, update, and access run-time parameters corresponding
to a block's dialog parameters.

Macro Description

ssGetNumRunTimeParams Get the number of run-time parameters
created by this S-function.

ssGetRunTimeParamInfo Get the attributes of a specified run-time
parameter.

 Register all tunable dialog parameters as
run-time parameters.

ssRegDlgParamAsRunTimeParam Register a run-time parameter.
ssSetNumRunTimeParams Specify the number of run-time parameters

to be created by this S-function.
ssSetRunTimeParamInfo Specify the attributes of a specified run-

time parameter.
 Update all run-time parameters

corresponding to tunable dialog
parameters.

ssUpdateDlgParamAsRunTimeParam Update a run-time parameter.
ssUpdateRunTimeParamData Update the value of a specified run-time

parameter.
ssUpdateRunTimeParamInfo Update the attributes of a specified run-

time parameter from the attributes of the
corresponding dialog parameters.

10-13

10 S-Function SimStruct Functions Reference

Sample Time

Macro Description

ssGetInputPortSampleTime Determine the sample time of an input
port.

ssGetInputPortSampleTimeIndex Get the sample time index of an input port.
ssGetNumSampleTimes Get the number of sample times an S-

function has.
ssGetOffsetTime Determine one of an S-function's sample

time offsets.
ssGetOutputPortSampleTime Determine the sample time of an output

port.
ssGetPortBasedSampleTimeBlock-

IsTriggered

Determine whether a block that uses port-
based sample times resides in a triggered
subsystem.

ssGetSampleTime Determine one of an S-function's sample
times.

ssGetTNext Get the time of the next sample hit in a
discrete S-function with a variable sample
time.

ssIsContinuousTask Determine whether a specified rate is the
continuous rate.

ssIsSampleHit Determine the sample rate at which an S-
function is operating.

ssIsSpecialSampleHit Determine whether the current sample
time hits two specified rates.

ssSampleAndOffsetAreTriggered Determine whether a sample time and
offset value pair indicate a triggered
sample time.

ssSetInputPortSampleTime Set the sample time of an input port.
ssSetModelReferenceSampleTime-

DefaultInheritance

Specify that a referenced model containing
this S-function can inherit its sample time
from its parent model.

10-14

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetModelReferenceSampleTime-

DisallowInheritance

Specify that the use of this S-function in a
referenced model prevents the referenced
model from inheriting its sample time from
its parent model.

ssSetModelReferenceSampleTime-

InheritanceRule

Specify whether use of an S-function in a
referenced model prevents the referenced
model from inheriting its sample time from
the parent model.

ssSetNumSampleTimes Set the number of sample times an S-
function has.

ssSetOffsetTime Specify the offset of a sample time.
ssSetSampleTime Specify a sample time for an S-function.
ssSetTNext Specify the time of the next sample hit in

an S-function.

Simulation Information

Macro Description

ssGetBlockReduction Determine whether a block has requested
block reduction before the simulation has
begun and whether it has actually been
reduced after the simulation loop has
begun.

ssGetErrorStatus Get a character vector that identifies the
last error.

ssGetFixedStepSize Get the fixed step size of the model
containing the S-function.

ssGetSimMode Determine the context in which an
S-function is being invoked: normal
simulation, external-mode simulation,
model editor, etc.

ssGetSimStatus Determine the current simulation status.
ssGetSolverMode Get the solver mode being used to solve the

S-function.

10-15

10 S-Function SimStruct Functions Reference

Macro Description

ssGetSolverName Get the name of the solver being used for
the simulation.

ssGetStateAbsTol Get the absolute tolerance used by the
model's variable-step solver for a specified
state.

ssGetStopRequested Get the value of the simulation stop
requested flag.

ssGetT Get the current base simulation time.
ssGetTaskTime Get the current time for a task.
ssGetTFinal Get the end time of the current simulation.
ssGetTNext Get the time of the next sample hit.
ssGetTStart Get the start time of the current

simulation.
ssIsExternalSim Determine if the model is running in

external mode.
ssIsFirstInitCond Determine whether the current simulation

time is equal to the simulation start time.
ssIsMajorTimeStep Determine whether the current time step is

a major time step.
ssIsMinorTimeStep Determine whether the current time step is

a minor time step.
ssIsVariableStepSolver Determine whether the current solver is a

variable-step solver.
ssRTWGenIsAccelerator Determine if the model is running in

Accelerator mode.
ssSetStateAbsTol Set the values of the absolute tolerances

that the variable-step solver will apply to
the S-function states.

ssSetBlockReduction Request that Simulink attempt to reduce a
block.

10-16

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetSimStateCompliance Specify how Simulink treats an S-function
when saving and restoring the simulation
state of a model containing the S-function.

ssSetSimStateVisibility Specify whether or not the simulation state
of the S-function is visible (accessible) in
the simulation state of the model.

ssSetSolverNeedsReset Ask Simulink to reset the solver.
ssSetStopRequested Ask Simulink to terminate the simulation

at the end of the current time step.

10-17

10 S-Function SimStruct Functions Reference

State and Work Vector

Macro Description

ssGetContStates Get an S-function's continuous states.
ssGetDiscStates Get an S-function's discrete states.
ssGetDWork Get a DWork vector.
ssGetDWorkComplexSignal Determine whether the elements of a

DWork vector are real or complex numbers.
ssGetDWorkDataType Get the data type of a DWork vector.
ssGetDWorkName Get the name of a DWork vector.
ssGetDWorkUsageType Determine how the DWork vector is used in

S-function.
ssGetDWorkUsedAsDState Determine whether a DWork vector is used

as a discrete state vector.
ssGetDWorkWidth Get the size of a DWork vector.
ssGetdX Get the derivatives of the continuous states

of an S-function.
ssGetIWork Get an S-function's integer-valued (int_T)

work vector.
ssGetIWorkValue Get a value from a block's integer work

vector.
ssGetModeVector Get an S-function's mode work vector.
ssGetModeVectorValue Get an element of a block's mode vector.
ssGetNonsampledZCs Get an S-function's zero-crossing signals

vector.
ssGetNumContStates Determine the number of continuous states

that an S-function has.
ssGetNumDiscStates Determine the number of discrete states

that an S-function has.
ssGetNumDWork Get the number of data type work vectors

used by a block.

10-18

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssGetNumIWork Get the size of an S-function's integer work
vector.

ssGetNumModes Determine the size of an S-function's mode
vector.

ssGetNumNonsampledZCs Determine the number of nonsampled zero
crossings that an S-function detects.

ssGetNumPWork Determine the size of an S-function's
pointer work vector.

ssGetNumRWork Determine the size of an S-function's real-
valued (real_T) work vector.

ssGetPWork Get an S-function's pointer (void *) work
vector.

ssGetPWorkValue Get a pointer from a pointer work vector.
ssGetRealDiscStates Get the real (real_T) values of an S-

function's discrete state vector.
ssGetRWork Get an S-function's real-valued (real_T)

work vector.
ssGetRWorkValue Get an element of an S-function's real-

valued work vector.
ssSetDWorkComplexSignal Specify whether the elements of a data type

work vector are real or complex.
ssSetDWorkDataType Specify the data type of a data type work

vector.
ssSetDWorkName Specify the name of a data type work

vector.
ssSetDWorkUsageType Specify how the DWork vector is used in S-

function.
ssSetDWorkUsedAsDState Specify that a data type work vector is used

as a discrete state vector.
ssSetDWorkWidth Specify the width of a data type work

vector.

10-19

10 S-Function SimStruct Functions Reference

Macro Description

ssSetIWorkValue Set an element of a block's integer work
vector.

ssSetModeVectorValue Set an element of a block's mode vector.
ssSetNumContStates Specify the number of continuous states

that an S-function has.
ssSetNumDiscStates Specify the number of discrete states that

an S-function has.
ssSetNumDWork Specify the number of data type work

vectors used by a block.
ssSetNumIWork Specify the size of an S-function's integer

(int_T) work vector.
ssSetNumModes Specify the number of operating modes that

an S-function has.
ssSetNumNonsampledZCs Specify the number of zero crossings that

an S-function detects.
ssSetNumPWork Specify the size of an S-function's pointer

(void *) work vector.
ssSetNumRWork Specify the size of an S-function's real

(real_T) work vector.
ssSetPWorkValue Set an element of a block's pointer work

vector.
ssSetRWorkValue Set an element of a block's floating-point

work vector.

Code Generation

Macro Description

ssGetDWorkRTWIdentifier Get the identifier used to declare a
DWork vector in code generated from the
associated S-function.

ssGetDWorkRTWIdentifierMust-

ResolveToSignalObject

Get a flag indicating if a DWork vector
resolves to a Simulink.Signal object.

10-20

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssGetDWorkRTWStorageClass Get the storage class of a DWork vector
in code generated from the associated S-
function.

ssGetDWorkRTWTypeQualifier Get the C type qualifier (e.g., const)
used to declare a DWork vector in code
generated from the associated S-function.

ssGetNumInputPorts Get the number of input ports that a block
has

ssGetNumOutputPorts Get the number of output ports that a block
has

ssGetPlacementGroup Get the name of the placement group of a
block.

ssRTWGenIsCodeGen Identify any code generation that is not
used by the Accelerator.

ssSetDWorkRTWIdentifier Set the identifier used to declare a
DWork vector in code generated from the
associated S-function.

ssSetDWorkRTWIdentifierMust-

ResolveToSignalObject

Specify if a DWork vector resolves to a
Simulink.Signal object.

ssSetDWorkRTWStorageClass Set the storage class of a DWork vector
in code generated from the associated S-
function.

ssSetDWorkRTWTypeQualifier Set the C type qualifier (e.g., const)
used to declare a DWork vector in code
generated from the associated S-function.

ssSetPlacementGroup Specify the name of the placement group of
a block.

ssWriteRTW2dMatParam Write a Simulink matrix parameter to the
S-function's model.rtw file.

ssWriteRTWMx2dMatParam Write a MATLAB matrix parameter to the
S-function's model.rtw file.

ssWriteRTWMxVectParam Write a MATLAB vector parameter to the
S-function's model.rtw file.

10-21

10 S-Function SimStruct Functions Reference

Macro Description

ssWriteRTWParameters Write tunable parameters to the S-
function's model.rtw file.

ssWriteRTWParamSettings Write settings for the S-function's
parameters to the model.rtw file.

ssWriteRTWScalarParam Write a scalar parameter to the S-
function's model.rtw file.

ssWriteRTWStr Write a character vector to the S-function's
model.rtw file.

ssWriteRTWStrParam Write a character vector parameter to the
S-function's model.rtw file.

ssWriteRTWStrVectParam Write a character vector vector parameter
to the S-function's model.rtw file.

ssWriteRTWVectParam Write a Simulink vector parameter to the
S-function's model.rtw file.

ssWriteRTWWorkVect Write the S-function's work vectors to the
model.rtw file.

Miscellaneous

Macro Description

ssCallExternalModeFcn Invoke the external mode function for an S-
function.

ssGetModelName Get the name of an S-Function block or
model containing the S-function.

ssGetParentSS Get the parent of an S-function.
ssGetPath Get the path of an S-function or the model

containing the S-function.
ssGetRootSS Return the root (model) SimStruct.
ssGetUserData Access user data.
ssSetExternalModeFcn Specify the external mode function for an

S-function.
ssSetOptions Set various simulation options.

10-22

 SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetPlacementGroup Specify the execution order of a sink or
source S-function.

ssSetUserData Specify user data.
ssSupportsMultipleExecInstances Allow an S-function to operate within a For

Each Subsystem.

10-23

11

S-Function Options — Alphabetical
List

This section describes the S-function options available through ssSetOptions. Each S-
function sets its applicable options at the end of its mdlInitializeSizes method. Use
the OR operator (|) to set multiple options. For example:

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |

 SS_OPTION_DISCRETE_VALUED_OUTPUT);

11 S-Function Options — Alphabetical List

SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME
Allow a sample time of Inf for a port

Description

Allows an S-function with port-based sample times to specify or inherit a sample time of
Inf. This setting allows the port to have a constant value, and tells the Simulink engine
that all input and output ports support a sample time of Inf. See “Specifying Constant
Sample Time (Inf) for a Port” on page 8-36 for more information.

Example

See sfun_port_constant.c, the source file for the sfcndemo_port_constant
example, for an example.

See Also

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME

Introduced in R2007b

11-2

 SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION
Allow scalar expansion of input ports

Description

Specifies that the input to your S-function input ports can have a width of either 1 or
the size specified by the port, usually referred to as the block width. The S-function
expands scalar inputs to the same dimensions as the block width. See “Scalar Expansion
of Inputs” on page 8-22 for more information.

Example

See sfun_multiport.c, the source file for the sfcndemo_sfun_multiport example,
for an example.

Introduced in R2007b

11-3

11 S-Function Options — Alphabetical List

SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL
Allow calls to mdlSetInputPortDimensionInfo and
mdlSetOutputPortDimensionInfo with partial dimension information

Description

Indicates the S-function can handle dynamically dimensioned signals. By
default, the Simulink engine calls the mdlSetInputPortDimensionInfo or
mdlSetOutputPortDimensionInfo methods if the number of dimensions
and size of each dimension for the candidate port are fully known. If
SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALLS is set, the engine may also call
these methods with partial dimension information. For example, the methods may be
called when the port width is known, but the actual 2-D dimensions are unknown. See
mdlSetDefaultPortDimensionInfo for more information.

See Also

mdlSetDefaultPortDimensionInfo

Introduced in R2007b

11-4

 SS_OPTION_ALLOW_PORT_SAMPLE_TIME_IN_TRIGSS

SS_OPTION_ALLOW_PORT_SAMPLE_TIME_IN_TRIGSS
Allow an S-function with port-based sample times to operate in a triggered subsystem

Description

Allows an S-function that uses port-based sample times to operate in a
triggered subsystem. During sample time propagation, use the macro
ssSampleAndOffsetAreTriggered to determine if the sample and offset times
correspond to the block being in a triggered subsystem. If the block is triggered, all port
sample times must be either triggered or constant. See “Configuring Port-Based Sample
Times for Use in Triggered Subsystems” on page 8-37 for more information.

Example

See sfun_port_triggered.c, the source file for the sfcndemo_port_triggered
example, for an example.

See Also

ssSampleAndOffsetAreTriggered

Introduced in R2007b

11-5

11 S-Function Options — Alphabetical List

SS_OPTION_ASYNC_RATE_TRANSITION
Create a read-write pair of blocks that ensure correct data transfer

Description

Creates a read-write pair of blocks intended to guarantee correct data transfers between
a synchronously (periodic) and an asynchronously executing subsystem or between two
asynchronously executing subsystems. Both the read S-function and write S-function
should set this option.

An asynchronously executed function-call subsystem is a function-call subsystem driven
by an S-function with the SS_OPTION_ASYNCHRONOUS specified.

The Simulink engine defines two classes of asynchronous rate transitions.

• Read-write pairs. In this class, two blocks, using a technique such as double
buffering, ensure data integrity in a multitasking environment. When creating
the read-write pair of blocks, the S-functions for these blocks should set the
SS_OPTION_ASYNC_RATE_TRANSITION option. Furthermore, the MaskType property
of the read block, must include the character vector read and the MaskType property
of write block must include the character vector write.

• A single protected or unprotected block. To create a single Protected Rate Transition
block, create a subsystem that contains the following

and set the Tag value of the Outport block to AsyncRateTransition. The S-function
then provides the code for the protected transition. Note, this S-function does not set
the SS_OPTION_ASYNC_RATE_TRANSITION option.

See Also

SS_OPTION_ASYNCHRONOUS

11-6

 SS_OPTION_ASYNC_RATE_TRANSITION

Introduced in R2007b

11-7

11 S-Function Options — Alphabetical List

SS_OPTION_ASYNCHRONOUS
Specify this S-function drives a function-call subsystem attached to interrupt service
routines

Description

Specifies that the S-function is driving function-call subsystems attached to interrupt
service routines. This option applies only to S-functions that have no input ports during
code generation and 1 output port. During simulation, the S-function may have an input
port to provide a condition on which to execute. The output port must be configured to
perform function calls on every element. If any of these requirements is not met, the
SS_OPTION_ASYNCHRONOUS option is ignored. Specifying this option

• Informs the Simulink engine that there is no implied data dependency involving the
data sources or destinations of the function-call subsystem called by the S-function.

• Causes the function-call subsystem attached to the S-function to be colored purple,
indicating that it does not execute at a periodic rate.

• Enables additional checks to verify that the model is constructed correctly.

1 The engine validates that the appropriate asynchronous rate transition blocks
reside between the purple function-call subsystem. The engine also checks
that period tasks exists. You can directly read and write from the function-
call subsystem by using a block that has no computational overhead. To
ensure safe task transitions between period and asynchronous tasks, use the
SS_OPTION_ASYNC_RATE_TRANSITION option.

2 For data transfers between two asynchronously executed (purple) function-
call subsystem, the engine validates that the appropriate asynchronous task
transition blocks exits.

See Also

SS_OPTION_ASYNC_RATE_TRANSITION

Introduced in R2007b

11-8

 SS_OPTION_CALL_TERMINATE_ON_EXIT

SS_OPTION_CALL_TERMINATE_ON_EXIT
Force call to mdlTerminate

Description

Guarantees the Simulink engine calls the S-function's mdlTerminate method before
destroying a block that references the S-function. Calling mdlTerminate allows your
S-function to clean up after itself, for example, by freeing memory it allocated during a
simulation. The engine destroys an S-function block under the following circumstances.

1 A simulation ends either normally or as a result of invoking ssSetErrorStatus.
2 A user deletes the block.
3 The engine eliminates the block as part of a block reduction optimization (see “Block

reduction”).

If this option is not set, the engine calls your S-function's mdlTerminate method only
if the mdlStart method of at least one block in the model containing the S-function
executed without error.

Example

See the S-function sfun_runtime3.c for an example.

See Also

mdlTerminate

Introduced in R2007b

11-9

11 S-Function Options — Alphabetical List

SS_OPTION_CAN_BE_CALLED_CONDITIONALLY
Specify this S-function can be called conditionally

Description

Specifies that the S-function can be called conditionally by other blocks. The Simulink
engine uses this option to determine if the S-Function block can be moved into the
execution context of the conditionally executed subsystem in which the S-function
resides.

Example

See the S-function sdotproduct.c used in the Simulink model
sfcndemo_sdotproduct for an example.

Introduced in R2007b

11-10

 SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME
Disallow inheritance of Inf sample time

Description

Prohibits the S-Function block that references this S-function from inheriting a sample
time of Inf. The SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME option applies only
to S-functions that use block-based sample times.

Note If you have Simulink Coder, and the S-function declares the number of sample
times as PORT_BASED_SAMPLE_TIMES, it will not inherit a sample time of Inf unless it
specifies the SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME option.

If you have Simulink Coder, note:

• If the S-function specifies this option and inherits a sample time of Inf, the Simulink
Coder product determines how to generate code for the block based on if the block is
invariant.

• A block is invariant if all of its ports' signals are invariant. A signal is invariant if it
has a constant value during the entire simulation. A constant block sample time does
not guarantee all the ports' signals are invariant. For more information, see “Inline
Invariant Signals” (Simulink Coder).

• If the block is not invariant, the Simulink Coder product generates code only in the
model_initialize function. If the block is invariant, the Simulink Coder product
eliminates the block’s code altogether.

Example

See sfix_fir.cpp for an example.

See Also

SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME

11-11

11 S-Function Options — Alphabetical List

Introduced in R2007b

11-12

 SS_OPTION_DISCRETE_VALUED_OUTPUT

SS_OPTION_DISCRETE_VALUED_OUTPUT
Specify this S-function has discrete valued output

Description

Specifies this S-function has discrete valued outputs. With this option set, the Simulink
engine does not assign algebraic variables to this S-function when it appears in an
algebraic loop.

Introduced in R2007b

11-13

11 S-Function Options — Alphabetical List

SS_OPTION_EXCEPTION_FREE_CODE
Improve performance of exception-free S-functions

Description

Improves performance of S-functions that do not use mexErrMsgTxt, mxCalloc, or
any other routines that can throw an exception. An S-function is not exception free if
it contains any routine that, when called, has the potential of long-jumping out of a
block of code and into another scope. See “Exception Free Code” on page 8-60 for more
information.

Example

See vsfunc.c for an example.

See Also

SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE

Introduced in R2007b

11-14

 SS_OPTION_FORCE_NONINLINED_FCNCALL

SS_OPTION_FORCE_NONINLINED_FCNCALL
Specify generated code format for function-call subsystems called by this S-function

Description

If you have Simulink Coder, indicates that the software should generate procedures
for all function-call subsystems called by this S-function, instead of possibly inlining
the subsystem code. If an S-function sets this option, Simulink Coder ignores the
Inline setting for the Code generation function packaging option in the Subsystem
Parameters dialog box for the Subsystem block. For more information, see “About
Nonvirtual Subsystem Code Generation” (Embedded Coder).

Introduced in R2007b

11-15

11 S-Function Options — Alphabetical List

SS_OPTION_NONVOLATILE
Enable the Simulink engine to remove unnecessary S-Function blocks

Description

Specifies this S-function has no side effects. Setting this option enables the Simulink
engine to remove the S-Function block referencing this S-function during dead branch
elimination, if it is not needed.

Example

See the S-function sdotproduct.c used in the Simulink model
sfcndemo_sdotproduct for an example.

Introduced in R2007b

11-16

 SS_OPTION_PLACE_ASAP

SS_OPTION_PLACE_ASAP
Specify this S-function should be placed as soon as possible

Description

Specifies that this S-function should be placed as soon as possible in the block sorted
order. The SS_OPTION_PLACE_ASAP option uses a hierarchical sorted order such as that
used by blocks (“Rules for Block Priorities”). Within a subsystem, the Simulink engine
places an S-function block using this option as far up in the sorted order as possible
without changing the model's semantics. If the S-function's Priority block property is
set, and other blocks in the same subsystem have the same priority, the engine places S-
functions with this option before the other blocks in the same subsystem with the same
priority. This option is typically used by devices connecting to hardware when you want
to ensure the hardware connection is completed first.

Note: Simulink honors the SS_OPTION_PLACE_ASAP option, relative to other blocks,
only if this block and the other blocks are in the same subsystem. As a result, Simulink
does not compare two blocks set with SS_OPTION_PLACE_ASAP if they exist in different
subsystems. In addition, Simulink might not place blocks with SS_OPTION_PLACE_ASAP
set before blocks without SS_OPTION_PLACE_ASAP set if they are in different
subsystems.

For more information on block sorted orders, see “What Is Sorted Order?”.

Introduced in R2007b

11-17

11 S-Function Options — Alphabetical List

SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED
Specify this S-function uses port-based sample times

Description

Indicates the S-function registers multiple sample times (ssSetNumSampleTimes > 1)
to specify the rate at which each input and output port is running. The simulation engine
needs this information when checking for illegal rate transitions. If an S-function uses
this option, it cannot inherit its sample times. See “Hybrid Block-Based and Port-Based
Sample Times” on page 8-39 for more information.

Example

See mixedm.c for an example.

Introduced in R2007b

11-18

 SS_OPTION_REQ_INPUT_SAMPLE_TIME_MATCH

SS_OPTION_REQ_INPUT_SAMPLE_TIME_MATCH
Specify sample times of input signal and port must match

Description

Specifies that the input signal sample times must match the sample time assigned to the
block input port. For example:

generates an error if this option is set. The Simulink engine does not generate an error if
the block or input port sample time is inherited.

Introduced in R2007b

11-19

11 S-Function Options — Alphabetical List

SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE
Improve performance of run-time exception-free S-functions

Description

Improves performance of S-functions that do not use mexErrMsgTxt, mxCalloc, or any
other routines that can throw an exception inside of a run-time routines. Applicable
run-time routines include mdlGetTimeOfNextVarHit, mdlOutputs, mdlUpdate, and
mdlDerivatives.

See Also

SS_OPTION_EXCEPTION_FREE_CODE

Introduced in R2007b

11-20

 SS_OPTION_SIM_VIEWING_DEVICE

SS_OPTION_SIM_VIEWING_DEVICE
Indicate S-Function block is a SimViewingDevice

Description

Indicates the S-Function block referencing this S-function is a SimViewingDevice.
As long as the block meets the other requirements for a SimViewingDevice, i.e., no
states, no outputs, etc., the Simulink engine considers the block to be an external mode
block. As an external mode block, the block appears in the external mode user interface
and the Simulink Coder product does not generate code for it. During an external mode
simulation, the engine runs the block only on the host. See “Sim Viewing Devices in
External Mode” on page 8-58 in Writing S-Functions for more information.

Introduced in R2007b

11-21

11 S-Function Options — Alphabetical List

SS_OPTION_SFUNCTION_INLINED_FOR_RTW
Specify use of TLC file during code generation

Description

Indicates the S-function has an associated TLC file and does not contain an mdlRTW
method. Setting this option has no effect if the S-function contains an mdlRTW method.
During code generation, if SS_OPTION_SFUNCTION_INLINED_FOR_RTW is set and the
Simulink Coder product cannot locate the S-function's TLC file, the Simulink Coder
product generates an error. If SS_OPTION_SFUNCTION_INLINED_FOR_RTW is not set but
the Simulink Coder product does locate a TLC file for the S-function, it uses the TLC file.

Introduced in R2007b

11-22

 SS_OPTION_SUPPORTS_ALIAS_DATA_TYPES

SS_OPTION_SUPPORTS_ALIAS_DATA_TYPES
Support data type aliases

Description

Specifies how the S-function handles signals whose data types are aliases (see
Simulink.Aliastype for more information about data type aliases). If this option is set
and the S-function's inputs and outputs use data type aliases, SimStruct macros such as
ssGetInputPortDataType and ssGetOutputPortDataType return the data type IDs
of those aliases. However, if this option is not set, the SimStruct macros return the data
type IDs associated with the equivalent built-in data types instead. For a list of built-in
values for the data type ID, see ssGetInputPortDataType.

Note If you have Simulink Coder, and this option is not set and the S-function's
inputs use data type aliases, the Simulink engine attempts to propagate the
aliases to the S-function's outputs. However, this process can fail, in which case
the engine propagates the equivalent built-in data types instead. To explicitly
control the propagation of data type aliases through an S-function, enable the
SS_OPTION_SUPPORTS_ALIAS_DATA_TYPES option.

Introduced in R2007b

11-23

11 S-Function Options — Alphabetical List

SS_OPTION_USE_TLC_WITH_ACCELERATOR
Use TLC file when simulating in accelerated mode

Description

Forces the Simulink Accelerator mode to use the Target Language Compiler (TLC)
inlining code for the S-function, which speeds up execution of the S-function. If this
option is not set, the Simulink Accelerator mode uses the MEX version of the S-function
even if a TLC file for the S-function exists. This option should not be set for device driver
blocks (A/D) or when there is an incompatibility between running the MEX mdlStart
or mdlInitializeConditions functions together with the TLC Outputs, Update, or
Derivatives functions. Also, this option indicates that the TLC inlining code should be
used when generating a simulation target for a referenced model that contains this S-
function.

Note The Simulink Accelerator mode does not require the Simulink Coder product to
run an inlined S-function. However, to ensure that the inlined S-function can run in
accelerated mode in current and future Simulink releases, the TLC file for the S-function
must use documented TLC functions to access the CompiledModel structure.

Example

See the S-function timestwo.c used in the Simulink model sfcndemo_timestwo for an
example.

Introduced in R2007b

11-24

 SS_OPTION_WORKS_WITH_CODE_REUSE

SS_OPTION_WORKS_WITH_CODE_REUSE
Specify this S-function supports code reuse

Description

Signifies that this S-function is compatible with the Simulink Coder product subsystem
code reuse feature. See “S-Functions That Support Code Reuse” (Simulink Coder) in
the "Simulink Coder User's Guide" for more information. If this option is not set, the
Simulink Coder product will not reuse any subsystem containing this S-Function.

Example

See timestwo.c for an example.

Introduced in R2007b

11-25

